PART I: PROJECT/PROGRAMME INFORMATION

Project/Programme Category : Small-Sized Project/Programme
Country/ies : Indonesia
Title of Project/Programme : Enhancing the Adaptation Capability of Coastal Community in Facing the Impacts of Climate Change in Negeri (Village) Asilulu, Ureng and Lima of Leihitu District Maluku Tengah Regency Maluku Province
Type of Implementing Entity : National Implementing Entity
Implementing Entity : Kemitraan (Partnership for Governance Reform)
Executing Entity/ies : Harmony Alam Indonesia (HAI) Foundation
Amount of Financing Requested : $ 801.259 U.S Dollars

Project / Programme Background and Context:

Maluku Province is an archipelagic province comprising 1,412 islands with a total coast line of 11 thousand kilometers, and total area of 712,480 km2, where 92.4% of it is seas and only 7.6% is land. The total population of Maluku Province in 2016 reached 1,715,548 people with gender ratio of 101.77 which means that for every 100 females, there are 102 males. The majority of Maluku communities (80%) live in coastal areas and for generations they are depending on the fishery and marine sector, especially capture fishery. One of the prime commodities in the capture fishery sector in Maluku is tuna. In the Long-term Development Plan (RPJP) of Maluku Province of 2005 – 2025, the Government of Maluku Province focuses the sustainability-based regional development on the functions of archipelagic ecosystem.

According to Bappeda Maluku (2011), despite the enormous potential as an archipelagic province, Maluku has a very high level of vulnerability to climate change including vulnerability in relation to the

aspects of: (1) agriculture and foodstuff, (2) marine and fishery, (3) drinking water availability, as well as (4) social, economic, cultural and government administration aspects.

Vulnerability in the agricultural aspect (sources of food). In Maluku, most of the agricultural areas depend heavily on rainfall, and also indicate great dependency on the pattern of seasons (rainy season). Climate change affects the planting pattern, increases flooding in coastal areas, causes salinization and erosion due to the increase of sea surface and in addition, human activities may result in contamination and reduce the size of productive agricultural land, which in turn would pose a threat on food security at the household and local levels.

Vulnerability in the marine and fishery sectors in relation to the impacts of climate change, is in the form of increasing temperature and sea water level leading to changes in the coastal circulation pattern that affects the supply of nutrients, coastal erosion, sea acidity, and coral bleaching. Such condition clearly affects the ecological process that is directly related to the growing capability of coral and the spawning cycle of various coral fish and other invertebrates. All fishery businesses greatly depend on coastal ecosystem. Uncertain weather and more intense frequency of cyclones have disrupted the fish capture operation system and have made it less productive. This condition would lead to the decreasing supply of fish and loss of income for traditional fishermen and fishery industries.

Vulnerability in the aspect of drinking water availability includes 5 types of water, namely; (1) rain water, (2) ground water, (3) surface water, (4) desalinization water, and (5) imported water (bottled water). In Maluku islands, not all sources of water are accessible and easily available in most of the

Figure 1. Map of fishermen’s fishing ground in Maluku (Source: http://www.bpol.litbang.kkp.go.id)

Vulnerability in the aspect of drinking water availability includes 5 types of water, namely; (1) rain water, (2) ground water, (3) surface water, (4) desalinization water, and (5) imported water (bottled water). In Maluku islands, not all sources of water are accessible and easily available in most of the

islands. As the result, most of the communities are very vulnerable to the natural variability of rain or to the changes in the pattern of tropical cyclone.

Vulnerability in the social, economic, cultural and government administration aspects. The Regional Development Planning Agency of Maluku has identified several factors in these aspects as challenges to the adaptation efforts, among others: (1) Varied perceptions on climate change and competing priorities of the government and individuals; (2) relatively weak institutional framework of the government; (3) weak social and economic condition of the communities; (4) availability of capacity and good government in the region.

This project is aimed at assisting coastal communities in Maluku Tengah Regency to improve their resilience and reduce their vulnerability in the social, economic and ecological aspects from the threats of climate change impacts. Specifically, this project would assist several Negeri (villages) in Maluku Tengah, namely Asilulu, Ureng, and Lima, which are administratively located in Leihitu Sub-district.

Table 1. Demographic Data of Negeri Asilulu, Negeri Ureng, and Negeri Lima

<table>
<thead>
<tr>
<th>Monograph Data</th>
<th>Asilulu</th>
<th>Ureng</th>
<th>Lima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Population</td>
<td>5,857 people</td>
<td>4,723 people</td>
<td>5,198 people</td>
</tr>
<tr>
<td>- Number of Family Heads</td>
<td>1,187 Family Heads</td>
<td>1,094 Family Heads</td>
<td>927 Family Heads</td>
</tr>
<tr>
<td>- Males</td>
<td>2,941</td>
<td>2,389</td>
<td>2,675</td>
</tr>
<tr>
<td>- Females</td>
<td>2,916</td>
<td>2,334</td>
<td>2,523</td>
</tr>
<tr>
<td>Main Livelihood</td>
<td>Fishermen & Fishery Labor</td>
<td>Farmers & Fishermen</td>
<td>Farmers & Fishermen</td>
</tr>
<tr>
<td>- Number of Fisherman Fleets</td>
<td>128 Units</td>
<td>119 Units</td>
<td>30 Units</td>
</tr>
<tr>
<td>- Agricultural Commodities</td>
<td>Tubers, corn, and vegetables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Forestry Commodities</td>
<td>Sago, durian, lansat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Plantation Commodities</td>
<td>Coffee, Walnuts, cloves, nutmeg, and coconuts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Medical Facilities</td>
<td>2 Units</td>
<td>3 Units</td>
<td>2 Units</td>
</tr>
<tr>
<td>- Educational Facilities</td>
<td>7 Units</td>
<td>7 Units</td>
<td>5 Units</td>
</tr>
<tr>
<td>- Religious Facilities</td>
<td>6 Units</td>
<td>5 Units</td>
<td>6 Units</td>
</tr>
<tr>
<td>Geography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Regional Area of Negeri</td>
<td>± 19 KM²</td>
<td>± 16 KM²</td>
<td>± 19 KM²</td>
</tr>
<tr>
<td>- Length of Coastline</td>
<td>± 20.49 KM</td>
<td>± 19.33 KM</td>
<td>± 6.97 KM</td>
</tr>
</tbody>
</table>

The selection of those three villages as the project location is supported by the results of a research on vulnerability made by Subair (2013) stating that climate change has significant impacts on villages on the north coast of Ambon island, specifically impacts in the social, economic and ecological context.

Socio-Economic Context

4 Subair, dissertation titled Adaptation to Climate Change and the Resilience of Fishing Village Communities: a Case Study in the North Coast Areas of Ambon Island, Maluku, Postgraduate School, Bogor Institute of Agriculture, 2013, pp. 144 - 146.
Several socio-economic impacts of climate change on fishermen according to the results of the research by Subair (2013) include the increase of sea water level reaching settlement areas, the intensity of storm and high waves posing dangers to navigation, unpredictable changes in fish harvesting seasons, unpredictable shifts of fish seasons, confusion due to the fact that west monsoon and east monsoon are no longer in accordance with the monsoon calendar used as reference. Socio-economic impacts caused by the aforementioned condition include, among others: (1) vulnerability of settlements to damage caused by being hit by waves and strong storm wind; (2) decreasing fish catch due to the changes in fishing seasons and relocation of fishing ground.

Ecological Context

Ecological impact in the form of damage to road infrastructure and breakwater walls frequently occurred along the coastal areas from Ambon city to Asilulu village. Asphalt paving had disappeared from the road surface and puddles of sea occurred on several spots on the road, while many parts of breakwater walls had gone and some parts were frequently inundated by sea water. Another impact affecting the communities, which was deemed as a disaster, was frequent occurrence of strong wind along with high waves, as frequently occurred in 2010. When storms came, clean water supply was automatically disrupted. Fishermen in those three villages had to use sea water for bathing, washing and defecating purposes. Damage to coastal ecosystem has led to the loss of certain resources which could no longer be used by fishermen.

![Figure 2. The impact of tidal waves and abrasion in the form of damage to road infrastructure and breakwater walls due to tidal waves](image1)

![Figure 3. Fishermen built stilt structure for docking their boats due to the increase of sea water level](image2)

Another ecological impact recorded is the loss of coastal plants, including large trees that had been washed out by the sea. In addition, Fishermen who are affected by the increase of sea water level also realize that currently sea water has reached the backyards of some of their houses and is inundating the beach that is used to be used as the pace for mooring (drying) their boats.
Table 2. Relationship between the impacts of climate change and socioeconomic issues of the community in the 3 Negeri.

<table>
<thead>
<tr>
<th>Impacts on Environmental Change</th>
<th>Indicators of the Impacts on Change</th>
<th>Arising Socioeconomic Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise of sea level</td>
<td>Rise in sea level is greatly perceived especially in Petuanan Batu Lubang Asilulu.</td>
<td>Seawater passing through embankments threatens community settlements especially those located next to the coast.</td>
</tr>
<tr>
<td>Increase in the incidence of extreme weather on the sea</td>
<td>Wave pattern perceived to be different from the previously recognized wave characteristics.</td>
<td>Fishermen’s fishing boats and facilities do not yet have the capacity to face a storm or great wave (under 10GT), although they can no longer be classified as traditional equipment. During the East Monsoon, going to sea poses high risks causing fishermen prefer not to go to sea and look for a side job to make ends meet.</td>
</tr>
<tr>
<td>Shifting fishing season</td>
<td>During the dry season, captured fish tend to be lesser. Fishing season is sometimes earlier or later than the prediction.</td>
<td>Uncertainty of fishing season influences fishermen’s catches because the change in tuna circulation and migration patterns is difficult to predict. In addition, tuna is one of seasonal fish which can only be captured in a certain period, instead of a fish which may be captured along the year.</td>
</tr>
<tr>
<td>Disturbed season and wind patterns</td>
<td>At the moment, the east and west monsoons are unpredictable. The East Monsoon should have occurred in April-August, while the West Monsoon should have been in September-January.</td>
<td>The commonly used seasonal calendar is no longer relevant to the conditions on the sea. Tanoar (a local term which means to do all things by referring to the moon). The difficulty in predicting this fishing season incurs losses for fishermen, because the incurred production cost is higher than the catch.</td>
</tr>
<tr>
<td>Shifting fishing grounds</td>
<td>Unpredictable fish circulation and migration patterns.</td>
<td>It subsequently causes obstacles among traditional fishermen who still merely rely on local knowledge and empirical experience in fishing. It becomes difficult for fishermen to determine fishing grounds and oftentimes, they must sail all day long only to find a new fishing ground. It affects the increase in fuel consumption and risk of captured fish decay</td>
</tr>
<tr>
<td>Degraded Coastal Ecology</td>
<td>Damages to the main coastal ecosystem, namely coral reef and seaweed bed (typical plant of shallow sea). It is more difficult to fish near the shores.</td>
<td>Fishermen must go to deep sea to fish coral reef or pelagic fish.</td>
</tr>
</tbody>
</table>
Figure 4. Interrelationships between changes in socio-economic and ecological contexts

Remarks

To address the aforementioned problems, this project will be focused on strengthening the capacity of communities in 3 villages in order to improve resilience and reduce vulnerability, the strategy of which is by combining traditional knowledge and local wisdom related to climate change adaptation which have already been put into practice. Based on the results of the research by Subair (2013), fishing communities’ adaptation to climate change may take the following forms:

Table 3. Forms of Fishermen’s Adaptation to the Impacts of Climate Change in the 3 Negeri.

<table>
<thead>
<tr>
<th>Impacts of Climate Change</th>
<th>Forms of Adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in fish season and fishing ground</td>
<td>Catching up with season by referring to information from wholesalers combined with traditional seasonal calendar</td>
</tr>
<tr>
<td></td>
<td>Going to sea in groups led by wholesalers</td>
</tr>
<tr>
<td>Extreme weather and risks of going to sea</td>
<td>Double job pattern of Farmer-Fisherman for those who have agricultural land or by trading.</td>
</tr>
<tr>
<td></td>
<td>Switch to catching demersal fish of low commercial value in a relatively safer fishing ground (shallow waters).</td>
</tr>
<tr>
<td>Wavy sea and strong wind</td>
<td>Fishermen develop a fishing technique by using kites which is fit for fishing in a wavy sea condition along with strong wind.</td>
</tr>
<tr>
<td></td>
<td>Changing boats and developing a technology based on semang (traditional boat).</td>
</tr>
<tr>
<td>Tidal wave and increase in sea level</td>
<td>Making talut along village roads and seashore bordering with settlement.</td>
</tr>
<tr>
<td></td>
<td>Making wooden para-para (ship fender) so that it is not washed away by tidal wave because the coast in which ships are moored is submerged.</td>
</tr>
</tbody>
</table>
A. Problem to be addressed
The proposed project is aimed at addressing the challenges posed by the changes in the season and wind patterns leading to the shift in fishing seasons and fishing ground due to the changes in the circulation pattern and sea animal migration patterns as the impacts of the climate change, tidal waves and the increase of sea water level as well as the increase of sea water temperature causing damage to submarine ecosystems and abrasion. Traditional calendar of seasons used thus far by fishermen is no longer relevant to the condition in the middle of the sea. Fishermen suffer losses due to the difficulties in predicting fishing seasons, because the costs for catching fish are larger than the income. It is difficult for fishermen to determine their fishing grounds and oftentimes they have to sail all day long to find new fishing grounds which leads to the increase consumption of fuel and the risk of fish catch getting rot. Extreme weather and strong wind increase the risks to go to the sea for traditional fishermen in the project location. Meanwhile, fish sources in shallow waters are depleting due to the damage to coral reef. There are even more vulnerabilities for communities living in coastal areas posed by tidal waves. Those challenges increase the vulnerabilities of fishermen and communities living in the project target locations. The increase of those vulnerabilities are caused by: 1) the communities’ dependency on their source of livelihood as fishermen with decreasing availability of fish in the sea, 2) the lack of alternative sources of livelihood, 3) Decreasing income due to less intensity of going to the sea, 4) Lack of adequate knowledge and information on adaptation and resilience to the impacts of climate change.

Accordingly, the main objective of the proposed project is focused on the efforts to address the changes in the circulation pattern and fish migration pattern through the mapping of new fishing grounds in order to increase the fishermen’ catch, the restoration of coastal ecosystems, preparation of alternative livelihood for the communities, the construction of supporting facilities for addressing the problems of increasingly high tidal waves on coastal areas as well as supporting facilities to increase the sale value of the fishermen catch. The mapping of new fishing grounds will be conducted with a series of activities to be started with a study on the changes in fishing seasons which is to be integrated to the traditional know-how of fishermen in the project locations. Such fishing ground map will make it easier for fishermen in detecting the locations of such fishing grounds which will lead to the decrease in operational costs and to increase the potential catch. The revival of shallow water ecosystem through the restoration of coral reef in the project location is a basic intervention which will improve the condition of shallow water ecosystem which will provide homes for pelagic fish and to extend the fishing grounds in shallow waters so that fishermen can still catch fish for commercial and consumption purposes. The development of alternative economy in coastal areas to open the possible involvement of women’s Group assisting for improving the families’ economic condition. Improvement of several sea walls in locations affected by coastal flooding and tidal waves would minimize threats to people residing around the coastal areas being the project locations.

B. Project/Programme Objective
1) To make fishing ground map which is integrated with the traditional knowledge of the local fishermen; 2) To repair the shallow water ecosystem for the resilience of the fishermen and alternative source of fish catch; 3) To develop alternative economic sources in the coastal areas which are resilient to the climate by improving fishery and marine technology; 4) To design and develop supporting facilities to anticipate coastal flooding and tidal waves, as well as supporting facilities for improving the sale values of the fishermen’ catch.

C. Project Component and Financing
The proposed project will be focused on the efforts to cope with the changes in the circulation pattern and fish migration pattern by mapping new fishing grounds in order to improve the fishermen’ catch, to restore coastal ecosystem, to prepare alternative livelihood for the communities, develop supporting facilities to address the increasingly high tidal waves in coastal areas and supporting facilities for improving the sale value of the fishermen’ catch. In order to achieve such objectives, there are four components of the project to be implemented, namely: 1) the mapping of fishing grounds which is integrated with traditional knowledge of the local fishermen; 2) the restoration of shallow sea ecosystem for the fishermen’ resilience and alternative fishing grounds; 3) the development of alternative economic sources in the coastal areas which are resilient to the climate by improving the fishery and marine technology; 4) the development of supporting facilities to anticipate the impacts of coastal flooding and tidal waves, as well as supporting facilities to improve the sale value of the fishermen’ catch. The successful implementation of the aforementioned project components would enhance the people’s resilience in coping with the impacts of climate change and improve the level of their economic condition in order to alleviate poverty in the three villages being the project location. The project will be implemented in three years by applying the four integrated components of the project as set out in Table 4.
<table>
<thead>
<tr>
<th>No</th>
<th>Project Components</th>
<th>Expected Concrete Outputs</th>
<th>Expected Outcomes</th>
<th>Cost (USD)</th>
</tr>
</thead>
</table>
| 1 | Mapping of fishing grounds which is integrated with the traditional knowledge of the local fishermen | 1.1. The existence of a map of the spread of new fishing grounds based on the circulation pattern and fish migration pattern as well as fishing season calendar
1.2. Approximately 150 fishermen (50 fishermen in each village) have new knowledge which is more relevant to the climate change and the establishment of fishermen’ groups which are able to cooperate with government offices, private parties, and non-governmental organizations in order to be able to access technology, group guidance and capitalization | Improvement of the fishermen’ catch by planning the type of equipment and place for catching or netting fish as well as provision of assistance in improving the traditional fish catching rules).
Enhancement of the capacity and knowledge of fishermen’ groups by adopting the climate change adaptation strategies. | 109,092.89 |
| 2 | Restoration of shallow sea ecosystem for the fishermen’ resilience and as alternative fishing ground | 2.1. Restoration of ± 12 hectares of coral reefs in Asilulu and Lima villages in order to expand new fishing grounds near the beach
2.2. Approximately 90 people (30 people in each village) have the knowledge on how to do transplantation, maintenance, care, dan monitoring on coral reefs To | Expanding the fishermen’ fishing ground in waters by the beach
Increasing the number of fish living spaces in shallow sea
Enhancing shallow sea fishing grounds
Improving the active roles of coastal communities in restoring, maintaining, and protecting coral reefs | 115,689.33 |
<p>| 3 | Development of alternative economy in the coastal areas which are resilient to climate by improving the fishery and marine technology | 3.1. Aquaculture farming by constructing 9 floating fish ponds for shallow water fish cultivation (3 ponds for each village) | Development of alternative economy as new sources of livelihood and improvement of the people’s economic condition | 175,653.59 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.</td>
<td>Nine floating fish net ponds for the cultivation of sea weed (3 floating fish ponds for each village) each of which will be managed by the groups (1 group = 20 heads of family)</td>
<td>Improvement of women’ participation in the processing of the sea weed cultivation products</td>
</tr>
<tr>
<td>3.3.</td>
<td>100 women in the 3 villages have the skills for processing the products of the fish and sea weed cultivation</td>
<td>Increase of the economic value of the sea weed cultivation products as an alternative economy other than fishing</td>
</tr>
<tr>
<td>4</td>
<td>Development of supporting facilities to anticipate the impacts of coastal flooding and tidal waves, as well as supporting facilities to improve the sale value of the fishermen’ catch</td>
<td>Improvement of the sale value of fresh fish catch of the fishermen’ groups to be sold to trades of directly sold to consumers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction of disaster risks such as village roads by the sea and save condition of the people’s houses located by the seas, due to tidal waves</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.</td>
<td>The provision of 1 Cold Storage with a capacity of with a capacity of 160 kg in each village</td>
<td></td>
</tr>
<tr>
<td>4.2.</td>
<td>Reconstruction of sea walls (talut) of ± 1 km in Asilulu, Ureng and Lima villages</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Other Operating Project Cost</td>
<td>115,210.88</td>
</tr>
<tr>
<td>6</td>
<td>Total Project Cost</td>
<td>679,175.26</td>
</tr>
<tr>
<td>7</td>
<td>Administrative Cost (8.5%)</td>
<td>57,729.90</td>
</tr>
<tr>
<td>8</td>
<td>Institution Admimistrative Costs (9.5%)</td>
<td>64,521.65</td>
</tr>
<tr>
<td>9</td>
<td>Total Fund Request</td>
<td>801,426.81</td>
</tr>
</tbody>
</table>
PART II: JUSTIFICATION PROJECT/PROGRAM

A. Describe the project/program components, particularly those focusing on concrete project adaptation activities, and how these activities contribute to climate resilience. For each program case, show/illustrate how the combination of each project will contribute to improving overall resilience.

Project Component 1: Making a map of fishing ground area integrated with the traditional knowledge of local fishermen

There is at least one updated map and calendar that integrates the source of fisherman's traditional knowledge with the technology of modern knowledge that can serve as a reference for fishermen in three Negeri. In extreme weather such as high intensity of storms, the unpredictable pattern of fish migration\(^5\) in which lately they tend to be found further in the deep of the sea, causing fishermen to require more amount and more complex resources in order to keep producing. In such conditions, the utilization of the marine area as the resources of capture fisheries not only requires the ability of fishermen and the fleet used for fishing. More than that, it is necessary to consider the many factors that determine the right times to go fishing and which waters to explore. The map of the fishing ground area and the updated season predictions will greatly help fishermen. As a result, the circulation pattern and fish migration are mapped and the fishing season calendar is updated. Hence, the immediate effects are cost efficiency for the people who catch fish and increase amount of captured fish.

Output 1.1: A map of the new fishing ground distribution points based on the circulation pattern and fish migration pattern and fish season calendar

Through a technology and modern knowledge approach on migration patterns and fish seasons integrated with traditional knowledge, this output will result in a map of fishing ground distribution points and an updated fish season calendar that will greatly help fishermen. Technology used in this output is Satellite Remote Sensing (SRS) to obtain data on sea surface of which result will be processed using Geographic Information System (GIS) to detect upwelling areas. The technology is used to enable remote sensing and mapping in attempt to develop and manage marine aquaculture. With this technology, fishers can continuously observe fishing grounds using accurate and real time data. With overlaying tuna fish distribution map and the upwelling location generated from the remote sensing, a location map of predicted potential tuna fishing ground can be obtained based on the variation of the moon and the types of climate event period. In addition to this technology, in its implementation it requires direct field observation to confirm the SRS data with fishing seasons pattern analysis using the Average Percentage Methods based on Times Series Analysis\(^6\). The result of the analysis is then being integrated with the knowledge and experience of fishers in 3 Nagari to draw data conclusion which shows fishing season and non-fishing season, fishing ground and no-fishing ground.

In technological aspect, the fishing ground mapping carried out in this project has taken into account practices developed in Indonesia and international. Such as the use of SRS technology which

\(^5\) Migration is a part of fish life cycle during which they find the habitat with suitable conditions for their survival.

was popularized by Professor Sei-Ichi Saitoh⁷ which reveals that the utilization of Satellite Remote Sensing (SRS) may help maintain the sustainability of fishery and aquaculture. The integration of such modern technology, together with the integration of field research with traditional knowledge will render the produced output capable of responding to the fisher community’s problems in 3 Negeri.

The project implementation is broken down in the following phases:

1.1.1. **Study on the circulation pattern and fish migration and fish season calendar in the project site** The implementation of this activity will start with a Focus Group Discussion (FGD), with a number of stakeholders and community components to obtain preliminary data concerning the initial constraints and potentials related to changes in circulation patterns and fish migration on the seasonal calendar which has been used by fishing communities as a reference, information on possible changes in circulation patterns and migration of tuna in the sea, and information on locations of existing fishing grounds. The activity involved community figures who take hold of Tanoar (the guideline for determining the season and location of fish by month), involving academic experts, the government (Ministry of Maritime Affairs and Fisheries), local NGOs, and at least 10 representative fishermen from all villages. The implementation of this activity will involve fishery and marine experts.

1.1.2. **Reviewing the location and mapping the fishing ground** Reviewing the currently effective fishing ground locations is carried out by experts along with fishermen and fishermen figures, and analyzing the existing potentials. At least 6 locations are sampled, and the relationship between upwelling location and potential fishing ground for tuna is then investigated. This study employs descriptive analysis method by comparing characteristics of upwelling location, bioecology and tuna fisheries. To review fish season, the percentage of captures is calculated using The Average Percentage Methods which is based on Times Series Analysis and the result will be the basis of the new fish season calendar.

1.1.3. **Workshop for establishing the season calendar and map of the new fishing ground area** The data resulted from the study are clarified with the stakeholders which include fishermen, fishermen groups, community figures from each Negeri, academics, and regional governments. The workshop will produce a new fishing season calendar and a map of the fishing ground area.

Output 1.2: About 150 fishermen (50 fishermen from each Negeri) posses the capacity and capability to adapt to the new fishing ground area and seasonal calendar.

The mapped circulation pattern and fish migration in the fishing ground zone and the updated the fishing season calendar raise the need to update the rules for traditional fishing (Sasi Laut) which the fishing community at the project site has used as a guideline. In addition, there is a potential for adjustment of fishing gear and fishing time in the new fishing ground area. Therefore, it is

⁷ A researcher and professor from Hokkaido University, Japan. Prof. Saitoh is one of the experts in determining the position of fishing grounds using SRS technology. Prof. Saitoh has already published many international publications, and frequently collaborated with numerous institutions in a number of countries, including America and Europe.
necessary that the fishermen in the project site have the capability to adapt in order to answer these challenges through the following activities:

1.2.1. **Strengthening institutional groups of fishermen in three Negeri**

It can be done by either strengthening the existing institutions in these three Negeri or by establishing new institutions. Strengthening institutions begins with a meeting to establish a mutual understanding regarding the updates made on the traditional fishing rules (sasi laut), and arranging the adaptation strategies to address potential emergence of challenges and obstacles in the application of fishing rules to be carried out in the new fishing ground area, formulating DAD allocations to support fisherman adaptation activities, as well as mapping stakeholders who can support the activities of fishermen groups in the project site. This activity will involve 150 people from the traditional fishing groups (50 fishermen from each Negeri) and the government of the Negeri.

1.2.2. **Mentoring fishermen groups in the three Negeri**

Mentoring aims to help fishermen groups improve their capacity and solidity in understanding and implementing climate change adaptation strategies, help to access fisheries technology, group consultation, access to capital, and to build a network with stakeholders - including government - for the institution sustainability post-project.

Project Component 2: Improvement of shallow marine ecosystems for fisherman resilience and alternative fishing locations

This project will focus on restoring a number of coral reefs that have already begun to get damaged due to rising sea water temperatures and flash floods caused by the Wai Ela dam break in 2013. Climate conditions cause coral reefs to break down and, as a result, the population of pelagic fish living in the shallow water decline drastically, while at the same time, the increasing risks of fishing due to strong winds and high waves discourage fishermen to go fishing. In some villages, fishermen who have economic alternatives such as trading, farming and gardening can still make a living in these conditions, but the people with no alternative livelihoods face difficult challenges to support their family.

Coral reefs play a main role as habitat (home), nursery ground, spawning ground, and also as feeding ground for numerous types of marine biota that make coral reefs its habitat. Coral reef restoration is a basic intervention that will restore shallow water conditions in the hope that it will become a home for pelagic fish, so that fishermen can fish them for commercial purpose or consumption. The results generated from the components of this project will lead to improving people's livelihoods and resilience to climate change, economic improvement, food security, and the recovery of coastal ecosystems.

To ensure sustainable management and maintenance of restored reefs, each component has capacity building activities to enable the community to obtain the necessary knowledge and skills when and after the project takes place. Local government authorities with expertise in various fields will be involved in this project as an intervention to lead and contribute and integrate existing innovations into regional government development strategies. For sustainability, a coral reefs alliance will be established and serve as volunteers who will maintain and preserve shallow water ecosystems, by involving youth groups in each Negeri, and also allowing future development for coral reef ecotourism under certain management so that it can generate funds for post-project maintenance.
Output 2.1. About 90 young people (30 people from each Negeri) knows how to do transplantation, maintenance, care and monitoring of coral reefs

The success of the activities to restore shallow marine ecosystems will be largely determined by the active role of the local people in the project site. An enabling condition that must be created is to understand the impacts of coral reef damage and the benefits that can be obtained if the restoration/rehabilitation of coral reefs is successful. In addition, it requires knowledge and capacity to perform coral reef transplantation techniques, coral reef maintenance and preservation, and regular monitoring. To create the enabling conditions, following are the stages of activities to be carried out:

2.1.1 *Training for youth groups on cultivation/transplantation, maintenance and preservation of coral reefs*

This activity will target youth groups in Negeri Lima, Negeri Asilulu, and Ureng, targeting 30 young people from each Negeri. This activity does not only puts emphasis on improving the knowledge and technical capacity regarding coral transplantation methods, but also raising the awareness of youth groups about the benefits of coral reefs in terms of social, economic and ecological aspects. Therefore, this activity will also be a momentum to establish youth groups to save coral reefs in each Negeri. At least, there should be one group in each Negeri that will be actively involved in coral reef restoration from transplantation to monitoring.

2.1.2 *Training on sustainable coral reef monitoring and organizational strengthening of the three youth groups to save coral reefs in the three Negeri*

The training aims to prepare a community that will sustainably maintain the cultivated coral reefs with a target of at least 90% of coral reefs growing well. Mentoring aims to ensure the proper monitoring of transplanted coral reefs, as well as to improve the ability of youth groups to synergize with the government and build networks with related stakeholders to map other improvable potentials such as coral reef ecotourism concept and so on.

These groups are expected to synergize with fishermen groups within the project site to be able to enforce DAD to support the maintenance and development of coral reefs which are potential source of income for the people as well as the development of coral reef nursery points and areas in other post-project sites. Proposing mechanism for DAD allocation for this tourism development is started with program proposal of developing tourism and coral reefs restoration by the youth and fisher communities to get the proposal listed in the Negeri’s Government Working Plan (RKP) which is drafted annually through the Village/Negeri Development Planning Forum. Once the program proposal is approved and listed in the Negeri’s government working plan, the next step is for Negeri government to draft Negeri’s Local Budget and to propose them to Regency Government for evaluation. The budget will be approved then by Negeri Government once the Regency Government accepts the proposal. DAD of Negeri Government will be then used to finance the development of submarine tourism, such as the development of its supporting means and facilities. In the future, income generated as the result of developing this submarine tourism can be jointly managed by the groups and Negeri Government by establishing Negeri Government Owned Enterprise to handle the tourism management.
Output 2.2. Restoration of ± 12 ha coral reefs in Negeri Asilulu and Negeri Lima to expand the new fishing ground area near the coast

The implementation of this project will apply the latest technology adaptation, namely the rehabilitation of wave-resistant coral reefs, by increasing the effectiveness of the cultivation system and grafting/transplantation techniques with a success rate of 90-100%. Water territory near project location has unpredicted seawaves which tend to be big and high, in which case it may pose the coral reef seeds to damage risk when there are strong waves and underwater currents. For this reason, to plant the transplant seeds, special technique/method shall be applied, such as when tying up the seeds to the substrate (media) should use the transplanting technique, and also by selecting certain coral types, such as Stylophora Pistillata, Pocillopora Verrucosa and Acropora formosa, both are the most wave-resistant, this is to reduce the risk of failure (effectiveness). If the target of ± 12 ha in Asilulu and Lima villages is achieved, the use of this grafting technique will at least reduce up to 97% of the wave energy and break the waves up to 86%. Therefore, it can solve the problem concerning minimum fishing ground location, especially in areas near the coast and it can also reduce waves that hit wave barriers and the impacts of abrasion. This activity will involve the active role of youth groups in each Negeri starting from the planning, implementation, maintenance and monitoring of coral reef restoration. To achieve this output, the activities that will be carried out are:

2.2.1. Survey and selection of locations for coral transplantation
The selection of locations is determined by the results of field surveys in shallow sea waters with a large amount of damage. The survey will monitor the extent of damage and also control the recruitment of coral reefs in the area. The determination and review of locations will take into account physical, chemical and biological factors. Algae and coral diseases are factors that will be considered. Locations that contain at least macro algae will be prioritized for restoration/rehabilitation. This activity will be carried out in a participatory manner with local residents, volunteers, local NGOs, and experts in the field of coral reef restoration and rehabilitation. The activities include mapping the potentials, capture points, and weather with a target area of ± 12 ha mapped in the area of Negeri Lima and Negeri Asilulu.

2.2.2. Seedling and Nursery of Transplantation Seeds
The seeds are prepared by trained youth groups. Propagation will be carried out with a grafting/transplant method. Transplanted seeds that have been cut into small sizes of 7 cm/seedlings are then raised in nursery ground or place to keep the substrate containing live coral pieces to grow into coral buds. The minimum target is 1,875 nursery points with tables sized 3 x 3 M² and spacing of 5 x 5 M² covering ± 12 ha in the Asiliulu and Negeri Lima area. Incentives to be given to youth groups at the nursery and transplant stages are in the form of salary. The salary amount will be calculated based on the number of seedlings planted.

2.2.3. Monitoring, Maintenance and preservation of coral reefs
These activities aim to ensure that the transplanted coral reefs grow well and none of them are carried away. To ensure that coral reefs are growing well, monitoring and intensive care...
through cleaning up diseases and algae attached to coral reefs will be carried out periodically. This activity will fully involve the formed youth coral reef groups.

In addition to direct impacts of the restored coral reef ecosystem and marine biota habitat, directly and indirectly, it serves as well as source of economy and employment opportunity for the local community, for example, aside than being a food source, it can be further creatively made into ingredients used for beauty products; recently, coral aquaculture even wins a place for export market potency. In relation to youth community development, in post-project phase, the care-for-coral reefs youth community is expected to develop an eco-tourism concept, as other village models which have successfully applied this concept, by forming a youth group who had been trained in organizational issues, coupled with organizational strengthening, the group will focus on developing tourism potentials, both the existing ones and will-be developed ones. Certainly, to develop these new tourism potentials, ventures to mobilize supports from the government and investors are to be taken. Supports may be in the forms of capacity building, fund support, and tourism promotion.

Project Component 3: Alternative economic development in coastal areas that are climate resilient by improving technology in the fishery and marine fields

The majority of the people in the project site has been living in coastal areas for generations and around 80% of their communities work as fishermen and depends on the fisheries and marine sectors especially capture fisheries. Meanwhile, the potential of other coastal resources has not been widely explored. Some of the contributing factors are the lack of knowledge regarding the potential for coastal resource development, the lack of technology and capital to support these activities. As a result, there is not much that the community can do against changes in seasonal and wind patterns that cause a shift in the fish season and fishing ground due to changes in circulation patterns and animal migration patterns in the sea as a result of climate change. Meanwhile, the potential for fish availability in shallow water area is not maximized because of damage to coral reef ecosystems. Community direct dependence on marine ecosystems affects their social resilience and ability to deal with shocks, especially in terms of food security and economic vulnerability.

The components of this project will address the economic vulnerability issues of the three Negeri against climate change. Alternative livelihood models that will be developed are based on fisheries and non-fisheries. The success of this project is expected to encourage the government of the Negeri and local governments to adopt and develop alternative livelihood models that will be developed in this project. Alternative economic development will target groups of women in the project site who are not employed and economically dependent on the fish captures obtained by their husbands as household heads.

Output 3.1. Aquaculture farming with the installation of 9 floating net cages for Cultivating Shallow Water Fish (3 cages for each never) which for every floating net cage, it is managed by a group (1 group = 20 households)

Aquaculture farming or what is commonly known as Water Culture is a form of raising and breeding water animals or plants that uses water as its primary component. There are some types of water cultivation; one of them is fish culture. This project will develop shallow water fish culture using
floating net cages in the attempts of developing an alternative economy for 3 negeri community. Every Negeri will install 3 floating net cages, so there will be 9 floating net cages in 3 never.

This project is designed to be implemented in Negeri Asilulu, Negeri Ureng, Negeri Lima. Every never has a minimum of 3 floating net cages which will directly managed by the community group. This group will have an active role in developing the fish culture in each of these never. To achieve these outputs, activities planned to be carried out are:

3.1.1. Conducting fish culture training for groups in every Negeri
This activity aims to prepare the groups that have been formed in each never for handling a fish culture. Every group consists of 20 households; hence one never will have a minimum 60 households ready to manage the floating net cages. The objective of this training is for every group to have proper knowledge on how to cultivate fish in floating net cages, such as selecting and designating locations for this cages, making the floating net cages design and construction, deciding the layout, knowing what facilities are required for fish culturing, selecting types of fish to culture, and managing as well as marketing them.

3.1.2. Surveying location for floating net cage
The groups for this fish culture which have received trainings will conduct a survey to select and designate the locations for the floating net cages together with experts. In this activity, factors to take into account are natural disturbances (storms and water surges), whether predators inhabit the area, contamination, convenience, hydrographical conditions, the potencies of fish that will be culture, and potential conflicts among users. The survey result can help with the development of the area into floating net cages location for the groups to help improve the economy of people in 3 negeri.

3.1.3. Design making of floating net cages construction and facilities provision for the fish culture
This activity may serve as a follow-up activity of the survey conducted together. The groups will decide the design of the floating net cage they will be using for the fish culturing as required and based on the survey result. It is possible that every group may choose different design depending on the location of the survey and types of the fish they wish to culture. However, facilities that they are required to have are basically the same, such as the nets, they are going to need the smallest net size of 2 x 2 x 2 m to 9 x 9 x 9 m which are easily available in the market. Most important also is raft culture that is used to hook the nets, these rafts are commonly made from bamboo, timber, iron, and fiber which have been growingly made and used these days in modern fish culture. The next step is the fish seeds used that are going to be cultivated, usually the seeds can be acquired by purchasing ones or developing their own seeds which is possible with enough knowledge. The types of fish purposely for this cultivation shall have enough economic value to culture. The supply of fish feeds will accommodate as well the types of fish being cultivated. Supporting facilities that need to be prepared are a guard-house and other assistive equipments.

3.1.4. Managing the floating net cages
Every group is required to divide job to each of their members to collectively manage these floating cages. And it is very likely that every group will have their own unique job division following the needs arise within the group. The purpose of this job division is to give members of the group some responsibility to help improve the economy of the people in 3 Negeri. Maintaining floating net cages involves activities from cultivating the fish, harvesting, to marketing the results of these floating net cages.
Output 3.2. Nine floating rafts used to cultivate seaweeds (3 rafts for each negeri) which for every raft, it is managed by a group (1 group = 20 households).

In Indonesia, there are 3 methods used for seaweed cultivation, they are Bottom Method, Off-bottom Method, and Floating Method. To achieve the above output, method selected is the floating method. Floating method is an engineered form of the off-bottom method. The advantage of using this method is its workability to be applied in deeper water condition but still safe from big water surges, and seaweeds will receive better intensity of sunlight with constant water movement that helps the renewal of nutrition contained in sea water, this will ultimately facilitate better nutrition absorption in seaweeds that contribute to faster growth. Floating rafts are made of fibers, while their anchors are of iron, to ensure long term use. Floating raft from fibers is selected since they are of the best quality, compared to bamboo or timber, which usually last only 3 to 5 uses. Since these rafts will be submerged in the seawater during the period of cultivation

Seaweed cultivation will managed in group with 20 members per group. The plan is for every negeri to have 3 floating rafts for seaweed cultivation where every raft is to be managed by 1 group. With this, every group will be responsible for this floating raft for seaweed cultivation until the time this project completes. Expectation is put that this seaweed could help improve the economy of the people in 3 negeri by actively involving women community. To achieve these outputs, activities planned to be carried out are:

3.2.1. Seaweed cultivation training
This activity aims to prepare the groups that have been formed in each negeri for handling seaweed cultivation. Every group consists of 20 members. This training is to be given to each group, so they will have enough knowledge about cultivating seaweeds. Since there are factors to take into account when cultivating seaweeds, such as accurate location selection, seeds picking or selection, seeds provision, appropriate seedling method, maintaining seaweed cultivation and harvesting method, and also proper post-harvest handling to be able to increase the economic value of the seaweed.

3.2.2. Surveying location for seaweed cultivation
Surveying the location is conducted together by the groups and the experts where appropriate location for cultivating the seaweeds is determined. The basis for selecting this location shall be done in regard to water condition, depth of the water, bottom water, natural supply of seaweeds, and water quality.

3.3.3. Cultivating seaweeds
Method used for cultivating seaweeds in this activity is the floating raft. This method is divided into floating-monocline method and floating net method. In principle, these 2 methods use raft that could be made from bamboo, timber, iron, or fiber as a floating device where ropes or nets used can be hooked. The raft is rectangle in sizes that accommodate the condition reflected in the survey result. The ropes used to tie seaweeds to the raft are nylon type.

After floating raft, the next preparation is the seaweed seeds. Selecting seaweed seeds is key because good seaweed seeds will produce good results. The seaweed seeds then is cut up to small pieces, after that they are tied to the floating raft with 14 cm gap from one to another. Afterwards, raft is being pulled to designated location. What needs to pay attention too is the maintaining of the seaweeds by monitoring them once every 2-3 days. Harvesting seaweeds can be done if seaweeds reach certain weight, of which case, it may take around 1.5 - 4 months.
Output 3.3. 100 women in 3 Negeri have the skill required to process the result of fish culture and seaweed cultivation

To increase economic value of the seaweed harvest result, seaweed processing then is necessary to do. The processing of the entire seaweed harvesting will be done by the women group. Every never will have at least one group that does the processing of seaweed result with better sale value. Processed seaweeds could become the new economic icon for 3 never, in addition to its sea fish. To achieve these outputs, activities planned to be carried out are:

3.3.1. **Initial seaweed processing training**

The women groups that have been formed will receive seaweed processing training, so they will be able to increase the economic value of the seaweed harvest result. It is expected that every women group can produce different processed seaweed products depending on the group’s ability, respectively. In this training, access will also be opened that will connect the women groups with their processed seaweed products to the market.

3.3.2. **Purchasing and advance training on supporting tools used in seaweed processing**

To support smooth seaweed processing, these women groups will receive supporting tools they can use in processing the seaweeds. The purpose of these supporting tools is to maintain the quality of the processed seaweed products where from this higher economic value can be obtained. To increase income gain from the seaweed harvest, further processing is required to transform it into ready-to-use raw produce. Raw produce resulted from processed seaweed may take the forms of agar, carrageenan, and alginate. Agar can be processed into food finished product, pharmacy, cosmetics, and tissue paper. Carrageenan is usually used to make sauces, cattle food, and also pharmacy. While alginate may be processed into textiles and cosmetics, in addition to foodstuff and pharmacy. To facilitate streamline process in seaweed processing, it requires a seaweed processing machine that corresponds to the types of the raw produce it tries to make and which the women group seeks to develop in each Negeri. It is to be hoped that, every Negeri will have different seaweed processing machine so that there will be products of processed seaweed in each Negeri that could become their icon product. The women groups will be given training on how to use these supporting tools and their method of maintenance. The machine will be managed by women group and its maintenance will be the responsibility of each group

Project 4 Components: The development of supporting facilities to anticipate coastal flooding and tidal wave and supporting facilities to increase sale value of the fish the fishers catch.

The supporting facilities development project is part of adaption for endurance against the prevailing climate change. One obstacle that most fishers face as the result of this climate change is difficulty in locating catching areas in deep waters, this makes fishers need longer time in the sea. While the longer they spend time in the sea, the higher risk it is for the fish being less fresh, and when upon returning to the land these fish are not directly taken by fish sellers, fishers should have a Cold Storage to temporarily store them until the time the fish sellers or collectors take them. With proper Cold Storage, it will increase the economic value of fish catch.

Restoring a number of embankment areas impacted by the coastal flooding and tidal wave will minimize the risks the people living in the coastal area where the project is located may face. For this purpose, the restoration of a number of embankment areas which could no longer hold the rising of sea water level or big waves and have been damaged from seriously violent wave blows.
Output 4.1. Cold Storage of 160 kg capacity is available in every Negeri

Provision of a minimum of 1 cold storage of 160 Kg capacity in 2 Negeri, and this project will involve numerous supports coming from other parties, including the government, to afford the fulfillment of fisher groups’ needs in 3 Negeri. The intended support can be in various forms, for example from the government can be providing support in the form of knowledge, assistance with other supporting tools (e.g. : fishing gear). From the collectors’ traders, they can contribute to improving the selling price of fish caught by fishermen. Other parties such as academics can provide support in the form of knowledge and capacity building. The result, the freshness of the fish the fishers catch is preserved and with that maintaining as well the sale value to sellers or collectors.

Output 4.2. Restoring breakwater structure that stretches (talut) ± 1 km long across Negeri Asilulu, Negeri Ureng, and Negeri Lima

This project focuses on restoring the function and physical condition of ± 1 KM embankment-breakwater structure in 3 Negeri, with targeted outcome of reducing potential risks from the occurrence of tidal waves in 3 never, and impact of saving ± 800 lives in 3 Negeri who are potentially facing threats from the occurrence of tidal waves. In addition, it helps as well protect the ± 1.6 KM village road that lies along the seafront. Public Works Service will be involved in this project, from the consultation phase, survey implementation, and recommendation in relation to physical specification of the embankment which will be constructed, and the implementing contractor for the project. As for long-term maintenance after the project is completed, it will be the collective task of the community component and the local government component through its Public Works Service that holds the job, function, and responsibility in the construction and maintenance of the public infrastructure.

4.2.1. Surveying damaged areas around the embankment

field survey to identify spots where damage in the embankment are located and to measure the total damage will be conducted together with the community involving the Public Works Service. The result of the survey generates the data for the length of embankment to be repaired. It is expected that the Public Works Services will help with the preparation process of the development or at least willing to have a share in the area development.

4.2.2. Embankment restoration

The restoring of embankment in 3 Negeri involves the community of the never itself in order to improve the wellbeing of its people. If the result of this survey shows a total of more than 1 KM embankment area that requires restoration, it is expected that the Public Works Office could help restore the remaining embankment area that could not be covered by this project. Since the total length of the embankment that this project will restore is only around 1 KM.

Contribution to Climate Resilience

The proposed project is expected to improve living resilience of the local fishers and community in three Negeri by ensuring full and complete involvement of these fishers and community in increasing their economic income. The making of fishing ground area map will contribute tremendously to the fishers, since it means they do not have to spend longer time in the sea, nor do they go to far places
only to find perfect catching areas, and ultimately, it will help ensure maximum fish catch. And to increase the sale value of the fish caught, they will need to keep their fish fresh by storing them in a proper cold storage. To expand the catching area, coral reefs restoration will make significant contribution to making the new living ecosystem for the shallow water fish. For this coral reefs restoration, the youth are involved in its implementation. Other form of economic development is done with the floating net cages and seaweed cultivation which serves as an alternative economic activity other than fishing. The floating net cages and seaweed cultivation are performed along the coastal areas, which is still in close proximity to the community settlement, in that it can still involve the women in the maintenance and processing of the harvests. From alternative economic development, a significant economic increase will show in addition to the result obtained from fishing. On the other aspect, embankment restoration will benefit the local fishers and community since it will protect the area where they live from high tidal waves.

Throughout the implementation of this adaptation activity, some programs are carried out, such as capacity building for the fishers and community, technology and information knowledge development, infrastructure improvement, sea ecosystem improvement, increasing access to relevant stakeholders and organizational governance development.

B. Project’s economic, social and environmental benefits, with particular reference to the most vulnerable communities, and vulnerable groups within communities, including gender considerations. Strategy to avoid or mitigate negative impacts, in compliance with the Environmental and Social Policy of the Adaptation Fund.

Provinces across Maluku Island are extremely vulnerable to climate change, including their maritime and fishery aspects. Therefore, this proposal aims to address the life vulnerability of fishermen and communities in the 3 Negeri. The 3 Negeri were selected as project sites based on the results of a study that indicates climate change has a considerable impact on the Negeri across on the north coast of Ambon Island, especially the impact in the social, economic and ecological contexts, according to Subair (2013). This project can address the life vulnerability of communities across Negeri Asilulu, Negeri Ureng, and Negeri Lima against extreme climate change in Maluku waters in the last few years. The main communities who benefit from the adaptation of this project are fishermen groups, youth/fishermen groups, women groups, and other communities. The aforementioned communities will actively participate in delivering the project success. Mapping of fishing ground zone and the update to the seasonal calendar, which are implemented through collaboration between the use of technology and fishermen’s traditional knowledge, will lead to increased fishing catch. The development of alternative economy will create new source of livelihood and income for the community, especially for women who have not had any participatory role in improving the household economy. The women of the community will be actively involved in the development of alternative economy, due to the fact that women and children are extremely vulnerable against the impacts of climate change.

The restoration of coral reef ecosystems will not only recover damaged marine ecosystems, but also provide a habitat for shallow marine fish which can serve as a new fishing ground as well as can expand the area of fishing grounds. The active role of youth groups in coral reef restoration not only ensures the success of the restoration efforts. In concert with various stakeholders, the success of coral reef restoration will create opportunities for developing ecotourism potentials that will reinforce the rise of new sources of livelihood and reduce unemployment in the three Negeri.
The establishment of supporting facilities, such as breakwater, will reinforce the sustainability of the three Negeri.

Therefore, it is expected that this project can address the vulnerabilities of the community across the three Negeri. The activities to implement through this project will be beneficial socially, economically, and environmentally. The social benefits for the community include improved knowledge and skills, which in turn provide more room for social participation of all community groups along with their ability to survive and adapt to the impacts of climate change. The community will also receive economic benefits through the expansion of fishing ground, as well as the development of alternative economy based on fisheries and non-fisheries as an effort to improve resilience and adaptability to climate change. This activity will be accompanied with the construction of supporting facilities in the development of alternative economy. In addition, this project also offers environmental/ecological benefits for the community through the restoration of shallow waters’ ecological ecosystem. The following table summarizes the social, economic and environmental benefits of several project output components.
Table 5. Contribution of Project Components to Social, Economic and Environmental Benefits.

<table>
<thead>
<tr>
<th>Project component</th>
<th>Social Benefits</th>
<th>Economic Benefits</th>
<th>Environmental Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short to Long Term</td>
<td>Short to Long Term</td>
<td>Short to Long Term</td>
</tr>
</tbody>
</table>
| The mapping of fishing ground area as integrated with the traditional knowledge of local fishermen and institutional reinforcement for the fishermen groups | • Integration of traditional knowledge and modern technology to update fishing rules at the fishing community level
• New insights regarding the pattern of migration and circulation of marine animals
• There is a room for participation and collaboration among stakeholders across the three Negeri in facing the challenges against climate change that have caused difficulties for coastal fishing due to changes in the pattern of circulation and migration of fish. | • New Fishing Ground based on the pattern of circulation and migration of fish makes it easier for fishermen to find fish at the sea and to cut the operational cost while fishing
• Increased income from fishing catch | • Potential fishing grounds will be well-maintained and managed in a sustainable manner through updated fishing rules, and they will also be maintained and utilized properly and in a controlled manner.
• Existing resources are managed in a sustainable manner |
| Improvement of shallow marine ecosystems for Fisherman resilience and alternative fishing locations | • More fishing ground locations in shallow seas.
• Capacity building and new insights on the benefits of coral reef restoration/rehabilitation
• There is a room for participation and empowerment for youth groups to save coral reefs in concert with other stakeholders | • Expanding fishing grounds
• Increasing fishing catch by fishermen
• Providing a new source of income for fishermen
• Potentials for ecotourism development | • A form of adaptation for preserving shallow marine ecosystem resilience.
• Coral reefs become a shelter, feeding ground, and spawning ground for marine biotas
• The availability of fish, shrimp and other biotas
• Better-maintained beaches and coasts |
<p>| Alternative economic development in coastal areas that are climate- | • The community of the Three Negeri becomes less dependent | • Improving household economy with the rise of new business | • The potentials of existing marine resources will be maintained and |</p>
<table>
<thead>
<tr>
<th>Resilient by improving technology in the fishery and marine fields</th>
<th>On the sea as a source of decent livelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The community feels increasingly challenged to continually make development and innovations to build a more advanced society.</td>
<td></td>
</tr>
<tr>
<td>• There is a room for participation and empowerment for women groups to save coral reefs in concert with other stakeholders</td>
<td></td>
</tr>
<tr>
<td>• Capacity building and new insights on</td>
<td></td>
</tr>
<tr>
<td>Innovations derived from marine products.</td>
<td></td>
</tr>
<tr>
<td>• Increasing the community income from fish and seaweed</td>
<td></td>
</tr>
<tr>
<td>• Improving public knowledge on how to process fishing catch and marine products</td>
<td></td>
</tr>
<tr>
<td>• Opening opportunities for the community to improve their economy and income from various jointly-developed businesses</td>
<td></td>
</tr>
<tr>
<td>Utilized properly and in controlled manner.</td>
<td></td>
</tr>
<tr>
<td>• Existing resources are managed in a sustainable manner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The development of supporting facilities to anticipate coastal flooding and tidal wave and supporting facilities to increase sale value of the fish the fishermen catch</th>
<th>Facilitating fishermen in undertaking their fishing activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Protecting communities from the impacts of high waves and the risk of high tide</td>
<td></td>
</tr>
<tr>
<td>• Houses and other public facilities are protected against abrasion and erosion.</td>
<td></td>
</tr>
<tr>
<td>• Fishing catch is kept fresh</td>
<td></td>
</tr>
<tr>
<td>• The economic value of fishing catch is more stable</td>
<td></td>
</tr>
<tr>
<td>• Reducing the impact of abrasion and erosion on roads and public facilities</td>
<td></td>
</tr>
<tr>
<td>• Increasing the maintenance and provision of ecosystem services.</td>
<td></td>
</tr>
<tr>
<td>• Achieving the condition in which the environment and the community are more ready to face climate change</td>
<td></td>
</tr>
</tbody>
</table>
C. Explain or provide an analysis on cost effectiveness of the proposed project/program.

Based on the results of the study on the National Action Plan for Adaptation to Climate Change, overall Maluku Province is considered the most vulnerable region against the risk of coastal flooding, high waves and extreme weather. The only way to address the impact of climate change is preparing anticipatory measures and increasing readiness to deal with the situations and impacts of climate change. Moreover, coastal areas are most vulnerable against such impacts and, therefore, the surrounding communities must be involved in climate change adaptation activities as they will be directly affected.

This project will prioritize programs that are urgently needed by the community in the project sites aimed at economic development, social capital, and environmental resilience, as well as address overall vulnerability against the impacts of climate change. The project activities address capture fisheries sector, maritime affairs, alternative economic development, and social resilience as interventions in dealing with climate change. Funding from this project will be effectively used with a budgeted structure of 20% to 30% for the development of soft skills and 70% to 80% for the physical development across the three Negeri. To increase the direct benefits of the program budget for the community, we strive to implement a labor-intensive development system with local communities in the three Negeri. Developmental materials obtained from local potentials will be prioritized for empowerment and the workers from the local communities will be prioritized for recruitment. In this project, government participation and support will prioritize the promotion of program sustainability, by integrating the project with village development programs.

Coral reef restoration in this project is deemed the top priority for rehabilitating underwater ecosystems, especially shallow marine waters, and will contribute to the capture fisheries sector and improve the economy of the community. There are considerations from costs of recovery and rediscovery of coral reef, which also offer economic benefits. The average cost for making breakwater is higher than the recovery of coral reefs, meaning that the coral reef restoration will better prevent the impacts of loss caused by waves.

Project Component 1 will provide be beneficial for the community of the three Negeri, particularly fishermen groups. With the availability of the catching season calendar and the new *fishing ground*, the pattern of circulation and migration of fish can be identified, thus reducing the risks of swelling operational fishing costs. Increasing the capacity and readiness of fishermen to adapt to climate change and reinforcing the fishermen institutions will also better guarantee the continuity of sustainable capture fisheries.

Project Component 2 offers economic benefits to the community with new fishing grounds, as a form of adaptation to ecosystems in shallow marine waters. The problem regarding food vulnerability will be addressed with the availability of food sources originating from the sea that are resilient against the impacts of climate change. As for the long-term benefits, already-productive coral reefs can be further utilized as ecotourism that can add economic value to the community.

Project component 3 will lead to the development of new innovations in terms of creating alternative livelihoods that are climate resilient by implementing a number of strategies to increase income and skills in managing marine products.

Project Component 4 will be beneficial for the community, particularly those who live on the coastal area and the seafront. Construction of breakwater or wave-breaking walls is the fastest alternative to reduce the impact of climate change. As it will directly reduce the impact of abrasion and road erosion. In addition, supporting the procurement of *cold storage* for fishermen will massively help maintain the quality of fishing catch and the value of fish in the market.

The challenges encountered in the field are (1) the lack of public awareness to safeguard the sea as a sustainable resource, (2) the lack of knowledge on the management and utilization of existing resources, (3) limitations on equipment and technology used by fishermen that affect the expected yield, (4) the community’s ignorance on the impacts of climate change which will make it difficult in identifying problems occurring in the field.
<table>
<thead>
<tr>
<th>Project Component</th>
<th>Project Cost USD</th>
<th>Concrete Benefits from Adaptation</th>
<th>Avoided loss</th>
<th>Alternative Interventions and Compromise</th>
</tr>
</thead>
</table>
| The mapping of fishing ground area as integrated with the traditional knowledge of local fishermen and institutional reinforcement for the fishermen groups | 109,092.89 | • Increasing the resilience of fishermen in dealing with extreme weather by identifying fishing season patterns and new fishing ground locations
• Increasing fishing catch
• Reducing the sailing risk emerging due to bad weather
• Reducing fuel use
• Cutting down the time required for searching fishing ground locations
• Knowledge on the patterns of migration and circulation of fish in the sea
• Fishermen group institutions that are established and capable of collaboration with relevant stakeholders will procure support for adapting against the impacts of changes in the pattern of migration and circulation of fish | • Extremely high fuel consumption which burdens fishermen
• Income decline experienced by fishermen due to difficulties in finding fish
• The economic downturn affecting other sectors
• Fishing activities are abandoned | • Relying on the traditional seasonal calendar in determining the fishing ground locations.
Trade-off:
- Regional maps and traditional seasonal calendars are irrelevant and speculative
- Seasons are becoming more and more unpredictable, making it difficult to study fishing season
- Fishermen could not obtain the optimal fishing catch
- High operational cost due to indeterminate fishing grounds
• Fishing grounds are determined by fish wholesalers:
Trade-offs:
- Relying on the instructions from fish wholesalers
- Fishing tools are not compatible with the condition in the fishing locations
- Swelling debts to fish wholesalers
- Sailing trip is done in group and led by a fish wholesaler
• Fishermen are not organized through an established institution
 - Minimum support from the village/Negeri government and the Local Government
 - Budget allocation structure in DAD isn’t adaptive to the climate change
 - Lack of supports in preparing the community for challenges emerging from fish migration and circulation. |
| Improvement of shallow marine ecosystems for Fisherman resilience and alternative fishing locations | 115,689.33 | • Increasing the number of fish habitats in shallow waters, which may be utilized alternative fishing areas, if and when sailing poses too high a risk
• Coral reefs are well preserved and could serve as breeding location for marine biota
• Damaged coral reefs ecosystem is recovering
• Potential and new alternative livelihoods with the development of ecotourism program
• There is a room for participation and empowerment for youth groups to save coral reefs in concert with other stakeholders | • The damage of coral reefs ecosystem is worsening
• Diminishing habitat for various pelagic fish (fish that live in shallow waters)
• Higher degree of vulnerability that the environment faces as coastal ecology are damaged.
• Fishermen’s overreliance on fish sources in deep sea
Trade-offs:
- Risk of extreme climate and proneness to accident during sailing activity
- Ever-increasing operational cost for sailing
- The damage of coral reefs ecosystem is constantly aggravating
Trade-offs:
- Diminishing alternative sources for catching fish in shallow waters
- Tidal waves will be stronger and more intense, which are capable of destroying the breakwater structure
- Diminishing quantity of marine biota and fish food sources
- Inability to use the resources available in shallow sea waters
- Decreasing support capacity in the coastal ecosystem
- Declining awareness on the impacts, risks and benefits of coral reef ecosystem
- Ever-increasing practice of dynamite fishing.
- Growing number of unemployment among youth or productive age group |
| Alternative economic development in coastal areas that are climate-resilient by improving technology in the fishery and marine fields | 175,653.59 | • Increasing sources of livelihood from maritime prospects
• Increasing product diversification sourced of various marine and fishery commodities
• Improvement in household economy.
• Community dependency on capture fisheries
• The potentials of natural resources are not well managed
• The existing resources are not sustainably managed (*Sustainability*) | • Higher dependency on sources of income from capture fisheries
Trade-offs:
- Income earned are far from sufficient to cover for the family economy needs
- Suffering from debt with the fish wholesalers when sailing is not possible
- Higher rate of poverty and unemployment |
| **The development of supporting facilities to anticipate coastal flooding and tidal wave and supporting facilities to increase sale value of the fish the fishermen catch** | **163,528.58** | **Improving public knowledge on how to process fishing catch and marine products as food sources and trade commodities**
Reducing poverty rate
Increasing participation of women group in their family economy | **No room for women group to participate in improving their family economy**
Trade-offs:
- Plummeting family's standard of living
- Overreliance on husbands’ job as the only source of family income*

| **Improving public knowledge on how to process fishing catch and marine products as food sources and trade commodities**
Reducing poverty rate
Increasing participation of women group in their family economy | **Increasing resilience to the risk of abrasion along the coastal areas**
The village road and other facilities are protected from danger of waves
The dwelling of the local people are averted from disastrous high waves
Maintaining the economic value of fishing catch | **Frequent coastal flooding sweeping the settlement of the community along the coastal areas**
The damages to or the loss of fishing boats following the occurrence of high tides
Village road access is destroyed | **The breakwater is severely damaged due to climate condition, coastal flooding, and tidal waves.**
Trade-offs:
- The risk experienced people living in the coastal areas
- Increasingly high disaster risks
- Increased budget the government needs to allocate in addressing the impacts post-disasters
- The limited number of cold storages
Trade-offs:
- Fish freshness quality is not preserved
- Decreasing sales value for fishing catch, which is not balance with the sailing operational cost
- Steep increase in the local government budget allocation following the realization of cold storage procurement.
- |
D. Project consistency with national or sub-national sustainable development strategies, including, where appropriate, national or sub-national development plans, poverty reduction strategies, national communications, or national adaptation programs of action, or other relevant instruments, where they exist.

This project will always be synergized with the National Action Plan for Climate Change Adaptation (RAN-API) which has been designated by the National Development Planning Board (Bappenas) as a part of Indonesian national development framework applicable to the *climate proof/resilient development* concept. Project to be implemented in the project site will be integrated with the climate change and sustainable development adaptation *roadmap* that the Government of Maluku Province has owned, and during program implementation collaboration with the Local Government will always be done, particularly with the Regional Development Planning Board, and the Maritime Affairs and Fisheries Office of Maluku Province and Central Maluku Regency. Coordination and support for this program plan can be found in letter of support of the Maritime Affairs and Fisheries Office of Maluku Province and Central Maluku Regency (enclosed).

As for the directions of this action plan are 1) Adaptation of the strategy, policy, management, technology, and behavior to reduce (negative) impacts of climate change to its minimum level, and when possible utilize and maximize its positive impacts. 2) Efforts to reduce impacts (consequences) of climate change, both directly and indirectly, continuously or discontinuously or permanently, as well as its impacts by degree. To achieve this objective, this program will always be synergized with the climate change and sustainable development adaptation roadmap that the Government of Maluku Province has owned, and RAN-API which has been designated by the National Development Planning Board (Bappenas). In its implementation, the program will always collaborate with the Local Government, particularly with the Regional Development Planning Board, and the Maritime Affairs and Fisheries Office of Maluku Province and Central Maluku Regency. Coordination and support for this program plan can be found in letter of support of the Maritime Affairs and Fisheries Office of Maluku Province and Central Maluku Regency (enclosed), and support from three Negeri Government Administration in the project site (enclosed).

Ecological Resilience: In ecological resilience sector within the national action plan, Bappenas sets forth its targets, which are, 1) Reducing the size of damaged natural ecosystem in land and sea caused by extreme climate and climate change, 2) Increasing the quality and quantity of coral reefs, 3) Reducing degree of endangerment faced by key species as the result of climate change, 4) Enhancing the ecosystem resilience system. The Ministry of Maritime Affairs and Fisheries has a strategic plan for rehabilitation of coastal areas All of these targets are outlined as outputs in this project activities, there will be 12 ha coral reefs to be restored and, further, this project will form 3 care-for-coral reefs communities equipped with organizational knowledge and building. With the recovery of the coastal ecosystem, there is a high possibility for sustainability for the key species, in which case, also supports the livelihood of the fishers as well.

Economic Security and Food Security: the targets of the government in food security sector is to reduce food production loss due to extreme climate and climate change, to develop areas where new sources of food production are found in particular areas with low climate risks and minimum

environmental impacts (low emission), and to develop food security system for farmers/fishers and community (micro) by promoting healthy and nutrition-balanced dietary pattern, and to achieve food diversification at the optimal level. Along with this project, various systems and technologies in capture fisheries, cultivation, and aquaculture management, seaweeds, and its derivative products are to be developed, which, aside from giving beneficial values, also provides economic values to foods. Better product diversification from the fishermen catch will strengthen their food security in any climate condition, and it also serves a true realization on adaptation to environment.

Infrastructure Resilience: For infrastructure resilience, the targets the government set in this national action plan are 1) to develop an infrastructure resilience concept which is adaptive to climate change, 2) to build facilities with adaptability to climate change, 3) to provide and adapt infrastructure that has direct impact to the health of the community with high accessibility level, particularly for the community group who are both vulnerable and invulnerable to climate change, 4) to manage the integration of infrastructure layout with spatial planning within the concept of sustainable development. In this project, the output also covers some objectives, some of them are the breakwater construction and additional supporting facility for the fishermen, such as the cold storage. Ministry of Public Works and the Ministry of Maritime Affairs and Fisheries has strategic plan from is the development of facilities and infrastructure disaster mitigation and climate change in coastal areas. The breakwater construction planned in this project is not relatively big. Nevertheless, this project prioritizes on areas that will be directly affected by bad climate in some villages, such as Batu Lubang. This project will certainly require the support of the government in various manners to ensure maximum achievement.

Fishery Sector: In fishery sector, the government mission is to have fishery resources that are resilient to risks of climate change and have the capability of continually adapt to and shall become the alternative livelihood for the community, the productivity and diversity of the water ecosystem, and the fishery sector in general. This project intervention is consistent with the government objective of introducing fish culture technology using aquaculture system, and increasing sustainable productivity of ecosystem diversity.

E. Project’s relevance to meet national technical standards, where applicable, such as standards for environmental assessment, building codes, etc., and complies with the Environmental and Social Policy of the Adaptation Fund

National Standards
This project will follow the technical standards based on the direction and policy in the National Action Plan for Climate Change which has been designated by the National Development Planning Board (Bappenas), the climate change and sustainable development adaptation roadmap owned by the Government of Maluku Province, and the local and national policies, both existing and future policies. The implementation of this project will involve individuals who are knowledgeable and have expertise in their fields (Experts) to ensure the success of the activities being proposed. These experts will attend all activities from the beginning until the completion of the project which will be run by the contractor and the community.

Project 4 components aim to repair the existing seawall, which is damaged due to the impacts of heavy tides and abrasion, as this has been the focus of the previous Environmental Impact Assessments (AMDAL). However, if it is deemed necessary to conduct reassessment, project organizer will apply for AMDAL Business and/or Activity Permit or Environmental Management Plan.
and Environmental Observation Plan (UKL-UPL). The Scope of Government Regulation for Maritime Buildings and Structures are:

a. the types and criteria for Maritime Buildings and Structures;
b. the requirements and mechanism for erecting and/or constructing Maritime Buildings and Structures;
c. the procedures for dismantling and/or Maritime Buildings and Structures;
d. monitoring and evaluation procedures.

In implementing environmental preservation and management as the prerequisite for obtaining Business and/or Activity permit. will consider the applicable provisions related with the guidelines for constructing coastal protection structures in accordance with the Circular of the Minister of Public Works No. 07/SE/M/2010, in order to ensure that the construction of coastal protection structures adheres the applicable structural requirements and methods.

Every contractor and subcontractor, as well as any suppliers designated to perform the work must obtain any permits related with the work, such as heavy equipment transportation permit and operational permit for heavy equipment with axle load on public roads, according to Regulation No. 14/1992 on Roads and Government Regulation No. 41/1993 on Road Transportation. In project implementation will comply with the regulation about Workplace Safety and Health (Keselamatan dan kesehatan kerja or K3). Application of K3 management according to the Regulation of Minister of Labor No. 05/Men/1996 on Workplace Safety and Health Management System and Regulation No. 13/2003 on Employment, The Regulation of Minister of Public Works No. 09/PRT/M/2008 on the Guidelines for Construction K3 Management System for Public Works

Environmental and Social Policy of the Adaptation Fund

This project implementation is committed to all environmental and social policy and regulation of the Adaptation Fund. Before implementing the project’s activities, a process of identifying environmental risks and social risks will be carried out. Every risk will be identified in the beginning to prevent and/or minimize potential issues that may arise during project implementation. In addition to it, throughout project implementation a plan will be mapped out to prevent and/or minimize potential issues that may arise. There will be a mechanism to manage the occurring risks. Project implementation will comply with the national and international laws.

This project will be implemented by involving all communities in three Negeri. Particularly for the fishermen community, as they will actively involve in improving their sailing knowledge. Additionally, full participation of the youth community is also promoted to ensure the success of restoring the submarine ecosystem, in which case, it will ultimately support other activities. For women community, the activity is aimed to develop an alternative economy program, which will be executed in three Negeri. Women community is most catered to in this project since they have the highest vulnerability level. All results achieved from this activity can later be experienced by all communities in three Negeri and they can finally adapt to any risks emerging from climate change.

F. Describe if there is duplication of project / programme with other funding sources, if any

At present, no similar program / project in the project location will be developed in this proposal. However, the HAI partner (Tifa Institute Tifa Damai Maluku) as the main partner in the implementation of this program has done a lot of work to empower coastal communities in Central
Maluku Regency in the form of policies on management of marine and coastal resources based on adat and local wisdom (marine SASI), including how to improve the economy of coastal communities in fishery and non-fishery sectors.

G. Learning and knowledge management components to capture and disseminate lessons learned.

The new experiences and lessons learned from this project will be promoted based on the achievements of outputs 1.1, 1.2, 2.2., 3.1, 3.2. and 3.3. that are implemented in Negeri Asilulu, Negeri Ureng and Negeri Lima. The experience and lessons learned will be disseminated in concert with Institute Tifa Damai Maluku, through a collaboration with the Regional Government and the Climate Change Adaptation Forum and Maluku's Disaster Risk Reduction (APIK-PRB). The Learning process and Knowledge will be promoted as a model feasible to develop for other Negeri, particularly those across the coast of Central Maluku and Maluku in general. The learning and knowledge generated from this program will be presented in printed materials, visual and audio visual documentations. Promotion through printed documentation can summarize what activities to carry out for the success of the project so that the public can collectively learn from them. The dissemination can be done through social media and printed media. It is expected that the general public will learn through social media and printed media. Additionally, a documentary is to be made to accommodate the surrounding communities in the process of understanding and implementing what they learn. However, it does not rule out the possibility that the output of this project is applicable in other Negeri when supported by the government and other donors, if they wish to develop the project. Workshop activities will provide a room to share experiences with other communities in other Negeri. In addition, the workshops can also provide information for the government if they wish to support the community by issuing the appropriate policies.

H. Describe the consultation process, including a list of consulted stakeholders, what happens during project preparation, with specific reference to prone/vulnerable groups, including gender considerations, in accordance with the Environmental and Social Policy of the Adaptation Fund.

Consultation processes at the regional level will be carried out with key stakeholders, beginning with the preparation of program proposal in collaboration with the Institute Tifa Damai Maluku, Fisheries and Marine Service of Maluku Province, Fisheries and Marine Service of Central Maluku District, Government of Negeri Asilulu, Negeri Ureng and Negeri Lima, including establishing initial communication with the Climate Adaptation and Disaster Risk Reduction (APIK-PRB) Forum where the Institute Tifa Damai Maluku serves as Deputy Chairperson. During the implementation phase, gender consideration will become an important issue that is mainstreamed in every activity in the field.

Initial consultation with the Maritime Affairs and Fisheries Office of Central Maluku Regency was conducted in November 2018. The discussion and consultation was done with the Head of the Maritime Affairs and Fisheries Office of Central Maluku Regency regarding development initiative on Climate Change Adaptation Program for Coastal Areas and Small Islands Sector in Negeri Asilulu, Negeri Ureng, and Negeri Lima. From the result of the discussion and the consultation, the Maritime Affairs and Fisheries Office of Central Maluku Regency provided a letter of support for this project.

In this project we have identified minority groups and communities that will be the object of the project by collaborating with local community organizations who are more familiar with the characteristics of these communities, including mastering their culture and customs. Consultation
and communication as well as suggestions and input have been received through various representatives of the community, from fishermen groups, youth, and representatives of women’s groups using the questionnaire method.

In implementing the project, the consultation activities involve a number of stakeholders, in order to support the RAN-API’s vision and mission as a national target. Local communities are involved in key projects, problem identification, participatory mapping of potential vulnerabilities, and determining locations for implementing AF project. The Regional Government and the Government of the Three Negeri will be involved in providing data regarding community vulnerability, the potential for development, and possibilities for synergies in certain projects, providing training materials and reinforcing community capacity related to projects, mobilizing and planning follow-up programs post AF project. Academics, research and development institutions will provide technical support during project implementation, starting from mapping potential fishing ground areas, studying seasonal patterns, fish circulation and migration, advocating priority points for coral reef restoration, fish farming with aquaculture methods, and seaweed farming. Local non-governmental organizations will provide support to the activities, such as the development of coral reef lover groups, seaweed farmers, and women’s empowerment, as the technical implementer and community mentor.

The sustainability of the post-project results has been designed since the initial consultation with various parties, especially the community and the Village Government, some projects that can generate incentives or have economic value and can be developed will be encouraged to become Village-Owned Enterprises (BUMDes) where the Government through the Ministry of Village PDTT indeed sets four priorities use of village funds for 2018 namely the development of superior products in rural areas, development of BUMDes or BUMDes Bersama, embung, and other programs such as the development of superior products of the village including the tourism industry and the fish management industry that will be developed in this project. If it goes according to plan, this project will strongly support the National target where the government through Permendesa No. 19/2017 concerning Priority in Using Village Funds 2018 allocates a large enough budget for the development of BUMDes. And of course projects that were started in this AF program will very likely be sustainable post-projects.

I. Justify the requested funding, focusing on the full cost of Adaptation considerations.

Harmony Foundation and Institute Tifa Damai Maluku expect full funding from the Adaptation Fund project, because other funding sources for this program are not yet available.

Maluku Province consists of small islands which are extremely vulnerable to the issue of isolation arising from the increasingly worsening climatic conditions. Maluku people are dependent on sources of food/provisions originating from Sulawesi or Java. So, as the climate condition worsens, the vulnerability level of the community will also rise. With 90% of population working as fishermen, the community in the three Negeri is extremely vulnerable to climate change, unpredictable pattern of fish circulation and migration, extreme weather, rising sea levels, and damages to coastal ecosystems, all of which affecting the fishermen's livelihoods. Economic and social costs rise due to declining catches and increasing difficulty in finding fishing locations. The majority of population do not have alternative livelihoods due to lack of knowledge required for developing diversification of economic value products. Experiencing such impacts, the degradation
of coastal ecosystem quality and declining fish commodities are the root cause to fishermen vulnerability. Therefore, this project is proposed for the following reasons.

Component 1. The mapping of fishing ground area as integrated with the traditional knowledge of local fishermen and institutional reinforcement for the fishermen groups (without funding)

The absence of fishing ground map and updated seasonal calendar will cause the decline of fishermen’s main fishing catch, which is tuna. The government will spend a large amount of money to increase the productivity of fishermen or new fishing technology or ships with greater capacity will be required. In addition, it also contribute to the decline of the regional income, even though according to Destructive Fishing Watch (DFW) Maluku is the largest contributor to tuna exports. In the meantime, the government, in this case the DKP of Maluku Province, only focuses on the procurement of ships and the construction of cold storage, which is costly.

With funding for component 1, this project will help create a standard fishing ground map and a new fishing season calendar with the help of experts in the field of marine and climatology. This will be massively beneficial for fishermen and the government in achieving the target of developing capture fisheries in coastal areas. For the purpose of sustainability, this project can be developed in other regions. The existence of this project also helps ± 15,000 fishermen regain their confidence in their field of work, as well as their only livelihood.

Component 2 Improvement of shallow marine ecosystems for Fisherman resilience and alternative fishing locations (Without funding).

Underwater ecosystem damage can be perceived from the loss of numerous types of coastal fish and other marine biotas. This results in the vulnerability that pushes fishermen to go to the deep sea just to find fish for consumption. If this happens, the government must take part in helping to provide alternative food for coastal communities, especially the 3 Negeri. **With funding for component 2.** So far, Maluku government has only expanded the coral reef restoration area in the Ambon Bay region and this program has helped ± 30,000 families in the 3 Negeri gain better outcomes. New sources of livelihood will emerge along with a good ecosystem, which can support the community’s economy. The target of achieving national and local government action plans is also accomplished by way of protecting and improving the structure, function and integrity of the ecosystem and its resources, as well as reducing the rate of coral reef degradation. In terms of social aspect, this project develops, maintains and improves the community support in an effort to manage coral reefs.11

Component 3 Alternative economic development in coastal areas that are climate-resilient by improving technology in the fishery and marine fields (Without funding).

Without funding on this project, the government has to work harder and allocate an enormous budget for capacity building and employment, which becomes the only solution for improving the welfare of coastal communities. With diverse resource potentials ranging from the land and sea potentials, the government must map the potentials of each village according to community capabilities.

With the funding for component 3, this AF project will serve as a massive assistance to resolve socio-economic issues of the community across the 3 Negeri, because at least there would be 3 groups of aquaculture farmers, 3 groups of seaweed farmers whose members have been provided with skills in nursery, management, harvesting and monitoring sustainable program under the guidance of experts and supervised by the regional government.

Component 4 The development of supporting facilities to anticipate coastal flooding and tidal wave and supporting facilities to increase sale value of the fish the fishermen catch (Without funding).

In 2014, almost all villages in Leihitu Sub-district were affected by tidal flood caused by rising sea levels, further aggravated by high waves causing water to flood into settlements. The government has restored breakwater in several villages, but the repairs were partial in nature and other causing factors, such as coral reefs and etc., were not addressed. The repaired breakwater only lasted temporarily and became damaged again in the long run. Despite requiring a large budget, the breakwater was ultimately repaired, considering that leaving the condition as it was would endanger coastal communities, especially those living at the seafront. Besides, the government was focused on expanding the capacity of cold storage to increase the economic value of fishermen’s catch and the cost for cold storage is high enough even without endeavoring to reinforce other sectors.

With funding for component 4, AF project will greatly help the government and local communities in reinforcing endurance and resilience against the impacts of extreme environmental changes. The funds will be used to complement the shortcomings of the government’s endeavor, such as the most impactful damages on several villages, such as Batu Lubang, Negeri Asilulu Hitu, or Hila which are extremely vulnerable to coastal flooding. By aiming to reduce settlement vulnerability. The allocated funding for the procurement of cold storage also helps fishermen or groups of fishermen in need. Increasing fishermen’s income by maintaining the quality of catches delivered to buyers/traders will reinforce fishermen as fish producers and will increase sustainable regional income.

J. Describe how the sustainability of project/program outcomes has been taken into account when designing the project/program.

To ensure the sustainability of this program, we will promote the learning and knowledge model generated from this program to be adopted in the regional climate change adaptation action plan, including promoting the necessary local and regional policies, so that similar programs receive financial support from the region. We will also encourage that climate change adaptation project is included in the Negeri or Village development plan that can be funded through the Village Allocation Fund (DAD) which is budgeted annually by the Central Government. In this project, DAD serves as a supporting element for realizing the program. Consultation with the village governments indicates that some programs can be conducted collaboratively, including Village Community empowerment activities that allow them to be aligned with coral reefs cultivation and marine products management training, which will be involving women and youth roles during the process. The maintenance and expansion of breakwater (Component 4) structures shall be monitored by all communities, State Government and Public Work Office.
For Sustainability of livelihood diversification activities (Component 3), the development of various businesses will be strengthened through organizational briefing and the establishment of Village-Owned Enterprises (BUMDes), so that it is highly possible to maintain the development through village funding. Any fisherman organizations formed and provided with capacity improvement training shall manage several properties generated over the course of the project. Further, the development of these properties will be conducted in collaboration with the office of fishery service and the relevant village institutions.

In relation to youth community development, in post-project phase, the care-for-coral reefs (Component 2) youth community is expected to develop an eco-tourism concept, as other village models which have successfully applied this concept, by forming a youth group who had been trained in organizational issues, coupled with organizational strengthening, the group will focus on developing tourism potentials, both the existing ones and will-be developed ones. Certainly, to develop these new tourism potentials, ventures to mobilize supports from the government and investors are to be taken. Supports may be in the forms of capacity building, fund support, and tourism promotion. We will also promote to other potential donors for further development of climate change adaptation models in other places or if further program support is needed at the same locations.

Social Sustainability: This project was designed to consistent with the social framework of the Adaptation Fund. Communities in three Negeri will be actively involved in the project. Starting from project preparation, project implementation, and up to the completion of the project, the whole process will involve the existing communities. Active participation of the community in implementing this project ensures the sustainability of the project that, upon the completion of Adaptation Fund funding, it can improve community resilience against climate change.

Institutional Sustainability: The project also establishes institutions at the community level according to support the continuity of the project. The formation of these institutions aims to gain new insights, facilitates communication between communities, and more importantly juxtaposes the accesses needed by the communities in developing their institutions. Accesses in question are to establish cooperation with government institutions, from village government to the central government, private parties, and non-governmental organizations. It is expected that the cooperation between institutions and related stakeholders will enable accesses to technology, group guidance, capital, and others. As the institution cooperates with the regional government, they can formulate a joint DAD for the welfare of the community. In addition to facilitating institutions to obtain the necessary access, the establishment of these institutions also aims to prepare the institutions to manage, maintain and preserve the facilities built during the project.

Financial Sustainability: One of the project components is the development of alternative economy through technology development in fisheries and marine sectors. Alternative economic development aims to respond to the issue society sustainability so that they do not depend solely on fishing catch or sea products. The full engagement of the communities across 3 Negeri in carrying out the project, especially in this output, will involve more women groups. This aims to facilitate women to not depend solely on their husbands' income, as it is highly dependent on fishing catch. In addition to increasing financial income, fishermen groups can use the new fishing ground map. That way, after the project is completed, they have better economic resilience in facing climate change.
Environmental sustainability: Through this project, the sustainability of the underwater ecosystem will be addressed with coral reef restoration activities as they are carried out by coral reefs youth communities. The restoration of underwater ecosystems will also affect other activities. For example, the presence of coral reefs close to the coast will expand the new fishing grounds in coastal water. Further, coral reef restoration will contribute to the success in making net floating cages, because coral reefs will provide new sources of food. Coral reefs can also reduce strong undercurrent due to increasingly high tides.

K. Provide an overview of the environmental and social impacts and risks identified as being relevant to the project/programme.

<table>
<thead>
<tr>
<th>List of Environmental and Social Principles</th>
<th>No further assessment requirements for compliance</th>
<th>Potential Impacts and Risks – further assessment and management needed for compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance with the law</td>
<td>Further compliance assessment is not required</td>
<td>The result of this project, as well as its process, are consistent with many policies and regulations of the government of Republic of Indonesia and further support the government programs.</td>
</tr>
<tr>
<td>Access and Equality</td>
<td>Compliance assessment during the implementation may be required</td>
<td>In connection with the process and result, as well as its benefit pertaining to access and gender equality, potential gender-based involvement in this project may require further discussion.</td>
</tr>
<tr>
<td>Marginalized and susceptible groups</td>
<td>Compliance assessment during the implementation may be required</td>
<td>Considering the initial context of this project to map out any groups involved in project activities or activity objectives, assessment is strongly advised during the implementation</td>
</tr>
<tr>
<td>Human Rights</td>
<td>Further compliance assessment is not required</td>
<td>Indonesia highly regards the significance of upholding Human Rights</td>
</tr>
<tr>
<td>Gender Equality and Empowerment of Women</td>
<td>Compliance assessment during the implementation may be required</td>
<td>Several projects indeed aim to empower the women groups' skills by providing skill training. Compliance assessment during the implementation may be required</td>
</tr>
<tr>
<td>Core Manpower Rights</td>
<td>Compliance assessment during the implementation may be required</td>
<td>Primary Employee Policy in this project is consistent with the Adaptation principle policy</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Indigenous People</td>
<td>Compliance assessment during the implementation may be required</td>
<td>So far, there is no relevant conflict with any specific national, as well as local/customary regulation. In the event that any conflict arises, the project shall adjust to eliminate the conflict.</td>
</tr>
<tr>
<td>Forced resettlement</td>
<td>Further compliance assessment is not required</td>
<td>This project will strengthen local society adaptability.</td>
</tr>
<tr>
<td>Protection of Natural Habitat</td>
<td>Further compliance assessment is not required</td>
<td>Based on the initial assessment, this project focuses on the development of natural habitat protection. However, its implementation may require assessment</td>
</tr>
<tr>
<td>Biodiversity Conservation</td>
<td>Further compliance assessment is not required</td>
<td>One of the programs in this project focuses on the development and potentials of the existing biodiversity</td>
</tr>
<tr>
<td>Climate change</td>
<td>Further compliance assessment is not required</td>
<td>-</td>
</tr>
<tr>
<td>Prevention of Pollution and Efficiency of Resources</td>
<td>Compliance assessment during the implementation may be required</td>
<td>-</td>
</tr>
<tr>
<td>Public Health</td>
<td>Compliance assessment during the implementation may be required</td>
<td>Since there are numerous projects requiring active participation of the society, further compliance assessment during the implementation may be required</td>
</tr>
<tr>
<td>Cultural and Physical Heritage</td>
<td>Compliance assessment during the implementation may be required</td>
<td>Since the project location is strictly situated in waters and offshore areas, there is no cultural and physical heritage sites to be found</td>
</tr>
<tr>
<td>Field and Land Conservation</td>
<td>Further compliance assessment is not required</td>
<td>Potential location for this project object shall be evaluated prior to the project implementation</td>
</tr>
</tbody>
</table>

PART III: PROCEDURES FOR IMPLEMENTATION/EXECUTION

A. Describe the procedures for project/program implementation
<table>
<thead>
<tr>
<th>Description</th>
<th>Roles and Responsibilities</th>
</tr>
</thead>
</table>
| Harmony Alam Indonesia Foundation
- 1 person in charge of the Program to Donors
- 1 Program Manager
- 1 Program Officer
- 1 Program Advisor
- 1 Financial Advisor |
- Coordination and Narrative and Financial Reporting to the Partnership
- Communication to gain support from the Government and Regional Government
- Ensuring synergies between programs that run with the Maluku Climate Change Adaptation Roadmap and the National Action Plan for Adaptation to Climate Change
- Evaluating and suggesting improvements regularly toward the program achievements every 3 months
- Communicating and designating an Independent Evaluator annually
- Providing guidance for improvement and adjustments if there are any activities that potentially violate compliance with gender, social and environmental adaptation fund policies |
| Institute Tifa Damai Maluku
- 1 Program Officer
- 2 Financial Management staff
- 3 Village Facilitators |
- Coordinating with the Harmony Foundation for program implementation in the field
- Intensive communication with the Central Maluku District and Government
- Making a 3-monthly activity plan
- Carrying out technical activities of facilitation for program implementation in the field
- Preparing activity and financial reports every 3 months and submitting them to Program Advisor and Financial Advisor. |
| Experts
- 1 expert on Coastal, Fisheries and Marine Ecosystems
- 1 expert on alternative economy
- 1 expert on marine mapping
- 1 expert on construction building |
- Preparing reference materials and capacity building training for the community
- Becoming a resource person in internal program management meetings and training for the community
- Helping Design Coastal Ecosystem Restoration
- Helping Design alternative economic development that is relevant to the community
- Helping Design a participatory mapping plan for fishing ground areas and coastal ecosystems. |
| Fisheries and Marine Service of Maluku Province |
- Providing program directive to ensure synergies between programs that run with the Maluku Climate Change Adaptation Roadmap and the National Action Plan for Adaptation to Climate Change
- Becoming a source of information and data
- Becoming a resource person in accordance to activity needs |
| Fisheries and Marine Service of Central Maluku |
- Providing guidance for program implementation in the field
- Becoming a source of information and data
- Becoming a resource person in accordance to activity needs |

B. Describing the steps for the project/program financial risk management.
<table>
<thead>
<tr>
<th>Risk category</th>
<th>Level of risk</th>
<th>Risk Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispute over fishing grounds in a new fishing ground area</td>
<td>Low</td>
<td>Discussing the renewal of traditional fishing rules in a participatory manner with all stakeholders</td>
</tr>
<tr>
<td>Political will of the government at the regional and District levels, and local government to accept and the support to the objectives of the project</td>
<td>Low</td>
<td>Active involvement of all stakeholders from the start of the project</td>
</tr>
</tbody>
</table>
| Limitation in understanding and adopting new knowledge and innovations | Moderate | - Community capacity building in the project site
- Formulation of plans and implementation of participatory activities |
| Price changes on materials used for project implementation | Low | Budget review |
| Delay in funding disbursement | Low | - Timely reporting
- Assistance in preparing reports to implementing entities/partners |

C. Describe the steps for managing environmental and social risks, consistent with the Environmental and Social Policy of the Adaptation Fund.

<table>
<thead>
<tr>
<th>Risk category</th>
<th>Level of risk</th>
<th>Risk Management</th>
</tr>
</thead>
</table>
| Access and equity | Low | - Capacity building
- Participatory resource management |
| Marginalization and vulnerability | Low | The susceptibility and sensitivity of the impacts of activity implementation to all vulnerable community groups |
| Pollution prevention and resource efficiency | Low | Compliance with policies/regulations in the environmental sector |
| Rehabilitation of shallow marine aquatic ecosystems | Low | - The susceptibility and sensitivity of the impacts of activity implementation to all vulnerable community groups
- Community capacity building in the project site
- Formulation of plans and implementation of participatory activities |

D. Describe MONEV protocols and provide budgeted M & E plans

Monitoring and evaluation will be carried out periodically every three months by Program Advisors and Financial Advisors. The evaluation results will be used to provide guidance for improving the implementation of activities.
Monitoring and Evaluation will be done by independent parties every year end or annually, unless decided otherwise by Partnership and Adaptation Fund. The result of evaluation will be used as a recommendation for improvement and formulation of annual work plan and, when required, adaptation will be made following direction of the newest local/central government policies (if applicable).

Table 7. Monitoring and Evaluation Budget

<table>
<thead>
<tr>
<th>Inception Meeting</th>
<th>Budget (USD)</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Survey</td>
<td>20,893</td>
<td>Within 2 month of project starting</td>
</tr>
<tr>
<td>Midterm Review</td>
<td>7,543</td>
<td>18 months</td>
</tr>
<tr>
<td>Annual Meeting</td>
<td>51,921</td>
<td>Annual</td>
</tr>
<tr>
<td>Final Evaluation Report</td>
<td>1,643</td>
<td>36 months</td>
</tr>
<tr>
<td>Audit Report</td>
<td>6,429</td>
<td>Annual</td>
</tr>
<tr>
<td>Total</td>
<td>88,429</td>
<td></td>
</tr>
</tbody>
</table>
E. Result framework for project proposal, including achievement, target and indicator.

<table>
<thead>
<tr>
<th>Expected results</th>
<th>Indicators</th>
<th>Basic data</th>
<th>Targets</th>
<th>Verification Tools</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Objectives: Improving the resilience of communities in 3 Negeri and strengthen their social resilience to the impacts of climate change</td>
<td>Enhancing the preparedness and resilience of communities in three Negeri to adapt to the climate change</td>
<td>Basic data</td>
<td>Targets</td>
<td>Verification Tools</td>
<td>Milestones</td>
</tr>
<tr>
<td>Complete Objectives: Improving the resilience of communities in 3 Negeri and strengthen their social resilience to the impacts of climate change</td>
<td>Complete Objectives: Improving the resilience of communities in 3 Negeri and strengthen their social resilience to the impacts of climate change</td>
<td>Complete Objectives: Improving the resilience of communities in 3 Negeri and strengthen their social resilience to the impacts of climate change</td>
<td>Complete Objectives: Improving the resilience of communities in 3 Negeri and strengthen their social resilience to the impacts of climate change</td>
<td>Complete Objectives: Improving the resilience of communities in 3 Negeri and strengthen their social resilience to the impacts of climate change</td>
<td>Complete Objectives: Improving the resilience of communities in 3 Negeri and strengthen their social resilience to the impacts of climate change</td>
</tr>
<tr>
<td>Enhancing the preparedness and resilience of communities in three Negeri to adapt to the climate change</td>
<td>• Increasing the number of fishing catch to remain stable, despite weather condition in various fishing grounds.</td>
<td>• Producing at least one fishing ground map and new fishing season calendar.</td>
<td>• Having a minimum of 30% increase in income</td>
<td>• Having a minimum of 12 ha coral reefs area restored</td>
<td>• Having a minimum of 3 groups cultivating shallow water fish using the aquaculture system</td>
</tr>
<tr>
<td></td>
<td>• A habitat for biotas and more species of shallow water fish reemerges through the restoration of coral reefs.</td>
<td>• Producing at least one fishing ground map and new fishing season calendar.</td>
<td>• Having a minimum of 30% increase in income</td>
<td>• Having a minimum of 12 ha coral reefs area restored</td>
<td>• Having a minimum of 3 groups cultivating shallow water fish using the aquaculture system</td>
</tr>
<tr>
<td></td>
<td>• A number of population has better livelihoods by diversifying products from processed marine and fishery commodities.</td>
<td>• Producing at least one fishing ground map and new fishing season calendar.</td>
<td>• Having a minimum of 30% increase in income</td>
<td>• Having a minimum of 12 ha coral reefs area restored</td>
<td>• Having a minimum of 3 groups cultivating shallow water fish using the aquaculture system</td>
</tr>
<tr>
<td></td>
<td>• Forming strong community organization in various project sectors.</td>
<td>• Producing at least one fishing ground map and new fishing season calendar.</td>
<td>• Having a minimum of 30% increase in income</td>
<td>• Having a minimum of 12 ha coral reefs area restored</td>
<td>• Having a minimum of 3 groups cultivating shallow water fish using the aquaculture system</td>
</tr>
<tr>
<td></td>
<td>• Meeting the fishermen’ needs for public facilities and activities</td>
<td>• Producing at least one fishing ground map and new fishing season calendar.</td>
<td>• Having a minimum of 30% increase in income</td>
<td>• Having a minimum of 12 ha coral reefs area restored</td>
<td>• Having a minimum of 3 groups cultivating shallow water fish using the aquaculture system</td>
</tr>
<tr>
<td>Component 1: The mapping of fishing ground area as integrated with the traditional knowledge of local fishermen and institutional reinforcement for the fishermen groups</td>
<td>Component 1: The mapping of fishing ground area as integrated with the traditional knowledge of local fishermen and institutional reinforcement for the fishermen groups</td>
<td>Component 1: The mapping of fishing ground area as integrated with the traditional knowledge of local fishermen and institutional reinforcement for the fishermen groups</td>
<td>Component 1: The mapping of fishing ground area as integrated with the traditional knowledge of local fishermen and institutional reinforcement for the fishermen groups</td>
<td>Component 1: The mapping of fishing ground area as integrated with the traditional knowledge of local fishermen and institutional reinforcement for the fishermen groups</td>
<td>Component 1: The mapping of fishing ground area as integrated with the traditional knowledge of local fishermen and institutional reinforcement for the fishermen groups</td>
</tr>
<tr>
<td>Expected results</td>
<td>Indicators</td>
<td>Basic data</td>
<td>Targets</td>
<td>Verification Tools</td>
<td>Milestones</td>
</tr>
<tr>
<td>New Fishing Ground based on the pattern of circulation and migration of fish makes it easier for</td>
<td>- The number of community members and fishermen possessing traditional knowledge and modern technology</td>
<td>Will be completed during the research</td>
<td>- One fishing ground map and fishing season calendar</td>
<td>- Periodic project report</td>
<td>During and within project implementation</td>
</tr>
<tr>
<td></td>
<td>- The number of community members and fishermen possessing traditional knowledge and modern technology</td>
<td>Will be completed during the research</td>
<td>- One fishing ground map and fishing season calendar</td>
<td>- End year report</td>
<td></td>
</tr>
</tbody>
</table>
Component 2: Improvement of shallow marine ecosystems for Fishermen resilience and alternative fishing locations

<table>
<thead>
<tr>
<th>Expected results</th>
<th>Indicators</th>
<th>Basic data</th>
<th>Targets</th>
<th>Verification Tools</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>A habitat for marine biotas and more species of shallow water fish reemerges through the restoration of coral reefs</td>
<td>- The number of fishing ground spots in shallow sea.</td>
<td>Will be completed during the research</td>
<td>- 12 ha of coral reefs are recovered</td>
<td>- The report of study result</td>
<td>One year after project implementation</td>
</tr>
<tr>
<td></td>
<td>- the number of community members and fishermen possessing new capacity and knowledge on restoring/rehabilitating coral reefs</td>
<td></td>
<td>- 3 coral reefs youth communities are formed</td>
<td>- M&E report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- the number of coral reefs youth communities</td>
<td></td>
<td>- Fishing catch increased by 20%</td>
<td>- End year report</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 1 restored location have the potentials for ecotourism development</td>
<td>- Survey Data Report on coral reefs restoration groups</td>
<td></td>
</tr>
</tbody>
</table>

Component 3: Alternative economic development in coastal areas that are climate-resilient by improving technology in the fishery and marine fields

<table>
<thead>
<tr>
<th>Expected results</th>
<th>Indicators</th>
<th>Basic data</th>
<th>Targets</th>
<th>Verification Tools</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a diversification in the form of new sources of livelihoods, which are climate-resilient</td>
<td>- New alternative livelihoods resulting from marine and fishery resources</td>
<td>Will be completed during the research</td>
<td>- There will be at least 2 types of new livelihood, such as floating net cage fish cultivation and seaweed harvest</td>
<td>- The report of project result</td>
<td>After project implementation completes</td>
</tr>
<tr>
<td></td>
<td>- Community's income increased from the result of aquaculture fish cultivation</td>
<td></td>
<td>- There will be at least 9 groups of net cages fish cultivation</td>
<td>- M&E report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Community's income increased from the result of seaweeds cultivation</td>
<td></td>
<td>- There are at least 20 communities who possess seaweeds cultivation knowledge</td>
<td>- End year report</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The number of groups managing the fish culture</td>
<td></td>
<td></td>
<td>- Data Report on group progress</td>
<td></td>
</tr>
</tbody>
</table>
management using aquaculture system
- The number of groups managing the seaweed cultivation management

- Community’s income increased by 20% from the result of aquaculture fish cultivation
- Community’s income increased by 20% from the result of seaweeds cultivation

Component 4: The development of supporting facilities to anticipate coastal flooding and tidal wave and supporting facilities to increase sale value of the fish the fishermen catch

<table>
<thead>
<tr>
<th>Expected results</th>
<th>Indicators</th>
<th>Basic data</th>
<th>Targets</th>
<th>Verification Tools</th>
<th>Milestones</th>
</tr>
</thead>
</table>
| Decreasing risk of climate change impact leading to the vulnerability of the settlement and lower fishermen productivity | - The restoration length of the breakwater area (wave-breaking walls)
- The number of settlements averted from the danger of bad climate and coastal flooding
- The number of storages available for storing the fishing catch | Will be completed during the research | - There will be at least ± 1 KM of breakwater/wave-breaking walls in the improved 3 Negeri
- At least ± 800 lives in 3 negeri will be averted from the potential threats of tidal waves
- At least, it helps protecting the ± 1,6 KM village road that lies along the seafront.
- There will be at least 1 Cold Storage of 160 kg capacity in every Negeri | - The report of project result
- M&E report
- End year report | After project implementation completes |

F. Demonstration of how the project aligns with the Results Framework of the Adaptation Fund.

<table>
<thead>
<tr>
<th>Project Objective(s)</th>
<th>Project Objective Indicator(s)</th>
<th>Fund Outcome</th>
<th>Fund Outcome Indicator</th>
<th>Grant Amount (USD)</th>
</tr>
</thead>
</table>
| New Fishing Ground based on the pattern of circulation and migration of fish makes it easier for fishermen to find fish at the sea and to cut the operational cost while fishing | • One fishing ground map and fishing season calendar
• 60 communities of 3 Negeri improve their understanding on the collaboration between | • The improvement of fishermen’s knowledge on accurate fishing ground and fishing season
• Some fishermen work with relevant stakeholders | • There is an increase in fishermen fishing catch through the implementation of the collaboration between fishermen’s traditional technology and recently-acquired technology. | 109,092.89 |
| A habitat for marine biotas and more species of shallow water fish reemerges through the restoration of coral reefs | traditional and modern knowledge
- Fishermen operational cost while fishing decreased by 20%
- Fishing catch increased by 20%
- These fishermen groups acquire certain technology access, technical support or capital support from related stakeholder | • 12 ha of coral reefs are recovered
• 3 youth groups are formed to save coral reefs
• Fishing catch increased by 20%
• 1 restored Location can be further developed into ecotourism
• New fishing grounds around the coastal areas are increasing | 115,689.33 |
|---|---|---|---|
| There is a diversification in the form of new sources of livelihoods, which are climate-resilient | • There will be at least 2 types of new livelihood, such as floating net cage fish cultivation and seaweed harvest
• There will be at least 9 groups of net cages fish cultivation
• There are at least 20 communities who possess seaweeds cultivation knowledge
• Community's income increased by 20% from the result of aquaculture fish cultivation
• Community's income increased by 20% from the result of alternative economy development of each negeri
• There are some women groups who process the result of alternative economy to increase the economy sale value
• Alternative economy development groups encompass the knowledge about the alternative economy development of each negeri
• An increase in the economy income of the community
• To develop alternative economy in each negeri
• Each negeri has an authentic product
• Women dependence on husbands' income significantly decreases | • An increase in the quantity of marine biota habitat
• Coral reefs youth communities obtain specific knowledge on how to restore coral reefs
• New fishing grounds around the coastal areas are increasing | 175,653.59 |
result of seaweeds cultivation

Decreasing risk of climate change impact leading to the vulnerability of the settlement and lower fishermen productivity

- There will be at least ± 1 KM of breakwater/wave-breaking walls in the improved 3 Negeri
- At least ± 800 lives in 3 negeri will be averted from the potential threats of tidal waves
- At least, it helps protecting the ± 1,6 KM village road that lies along the seafront.
- There will be at least 1 Cold Storage of 160 kg capacity in every Negeri
- There are several restoration points of the breakwater in every negeri
- Cold storage should be positioned in the strategic location so that it can be accessed easily by the fishermen
- Breakwater restoration in 3 negeri is ± 1 KM long
- Cold storage in the coastal areas in every negeri

<table>
<thead>
<tr>
<th>Project Outcome(s)</th>
<th>Project Outcome Indicator(s)</th>
<th>Fund Output</th>
<th>Fund Output Indicators</th>
<th>Grant Amount(USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Increasing fishermen fishing catch by planning the type of tools and fishing location or net fishing location, as well as supporting the improvement of traditional capture fishing rule (sasi).</td>
<td>- Cost efficiency experienced by the fishing society</td>
<td>- Capacity development of fishermen groups in mapping new fishing ground and creating fishing season calendar</td>
<td>- The fishermen can implement new Fishing ground map and fishing season map through the assistance of the latest technology</td>
<td>109,092.89</td>
</tr>
<tr>
<td>1.2. Increasing ability and knowledge possessed by fishermen group organization by way of adopting the climate change adaptation strategy.</td>
<td>- Increasing fishing catch</td>
<td>- Collaboration in developing groups' institution</td>
<td>- The increasing number of the fishermen fishing catch</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Decreasing fishing expenses spent for sailing by fishermen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The fishermen groups are able to give some input in the arrangement of DAD or obtain easy access to capital or another helpful access</td>
<td></td>
</tr>
</tbody>
</table>
| 2.1. Expanding fishermen’s *fishing ground* zone in the area near the coast | • There is an increase in the capture fish population
• There is an increase in community’s income | • More fish population in the coastal area | • *More new fishing ground*, especially in regions close to the coastal areas
• More variety of fish available in regions close to the coastal areas
• Wider area for growth for the restoration of coral reefs | 115,689.33 |
|---|---|---|---|---|
| 2.2. Increasing new living ecosystem for the shallow water fish | • There are 2 models of alternative livelihoods which is successfully developed in group (including women group)
• 2 new models of livelihood is adopted in the village economic development plant | • Increased capacity on the management of alternative economy developed
• Seaweed harvest processing improves its sales value
• Women’s role in the development of alternative economy | • More variation of seaweed processed products
• Each negeri has its own processed products
• Women plays an active role in the development of alternative economy
• More people are interested in the development of alternative economy
• Can help improve family economy income
• Women express a higher degree of resilience to climate change | 175,653.59 |
| 2.3. Expanding the catching areas of the shallow water fish | • There are 3 location for storing fresh fish in 3 negeri that help preserve the quality and the sales value of fish
• There are several breakwater restoration points along the coastal areas of 3 negeri | • Surveying the location together for determining the breakwater restoration points and cold storage building locations | • People working together in repairing the breakwater and building the cold storage
• Cold storage can help improve fishermen economy
• Regional government takes part in building breakwater | 163,528.58 |
| 2.4. Improving the active role of coastal community in restoring, maintaining, and keeping the existence of coral reefs | | | |
G. Detailed budget with budget notes, a budget on the Implementing Entity management fee use, and an explanation and a breakdown of the execution costs.

<table>
<thead>
<tr>
<th>Component Budget</th>
<th>Personnel</th>
<th>Consumable</th>
<th>Equipment</th>
<th>Transport Vehicle</th>
<th>Consultancy/Trainer/Expert</th>
<th>Contractor and Service provider (Physical Development)</th>
<th>Maintenance Cost</th>
<th>Monev</th>
<th>Training</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component 1: The mapping of fishing ground area as integrated with the traditional knowledge of local fishermen and institutional reinforcement for the fishermen groups</td>
<td>29,460.71</td>
<td>22,428.58</td>
<td>10,714.29</td>
<td>17,857.15</td>
<td>23,214.29</td>
<td>-</td>
<td>2,857.15</td>
<td>1,060.71</td>
<td>1,500.00</td>
<td>109,092.89</td>
</tr>
<tr>
<td>Component 2: Improvement of shallow marine ecosystems for Fishermen resilience and alternative fishing locations</td>
<td>18,214.29</td>
<td>14,428.58</td>
<td>16,071.44</td>
<td>5,714.30</td>
<td>17,142.86</td>
<td>25,000.00</td>
<td>7,142.86</td>
<td>10,725.00</td>
<td>1,250.00</td>
<td>115,689.33</td>
</tr>
<tr>
<td>Component 3: Alternative economic development in coastal areas that are climate-resilient by improving technology in the fishery and marine fields</td>
<td>16,835.71</td>
<td>8,771.43</td>
<td>75,000.00</td>
<td>7,689.29</td>
<td>19,642.86</td>
<td>26,785.72</td>
<td>7,857.15</td>
<td>10,000.00</td>
<td>3,071.43</td>
<td>175,653.59</td>
</tr>
<tr>
<td>Component 4: The development of supporting facilities to anticipate coastal flooding and tidal wave and supporting facilities to increase sale value of the fish the fishermen catch</td>
<td>15,000.00</td>
<td>7,142.86</td>
<td>1,285.71</td>
<td>2,957.14</td>
<td>23,571.43</td>
<td>107,142.86</td>
<td>6,428.57</td>
<td>-</td>
<td>-</td>
<td>163,528.58</td>
</tr>
<tr>
<td>Project Execution costs, (vehicle, salaries, M&E, general secretariat services, Coordination fees, Stake holders Meetings,)</td>
<td>37,339.43</td>
<td>13,928.58</td>
<td>7,400.00</td>
<td>26,235.72</td>
<td>9,535.71</td>
<td>-</td>
<td>4,642.86</td>
<td>15,128.57</td>
<td>1,000.00</td>
<td>115,210.88</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Total Project Operation Costs</td>
<td>116,850.15</td>
<td>66,700.03</td>
<td>110,471.44</td>
<td>60,453.60</td>
<td>93,107.15</td>
<td>158,928.58</td>
<td>28,928.59</td>
<td>36,914.29</td>
<td>6,821.43</td>
<td>679,175.26</td>
</tr>
<tr>
<td>Administrative Cost (8.5%)</td>
<td>9,932.26</td>
<td>5,669.50</td>
<td>9,390.07</td>
<td>5,138.56</td>
<td>7,914.11</td>
<td>13,508.93</td>
<td>2,458.93</td>
<td>3,137.71</td>
<td>579.82</td>
<td>57,729.90</td>
</tr>
<tr>
<td>Institution Administrative Costs (9.5%)</td>
<td>11,100.76</td>
<td>6,336.50</td>
<td>10,494.79</td>
<td>5,743.09</td>
<td>8,845.18</td>
<td>15,098.22</td>
<td>2,748.22</td>
<td>3,506.86</td>
<td>648.04</td>
<td>64,521.65</td>
</tr>
<tr>
<td>Total Fund Request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>801,426.81</td>
</tr>
</tbody>
</table>

Personnel : Salary, salary local staff, honoraria, accommodation, perdiem travel, perdiem training

Consumable : Consumption, Meeting meals, Seed, meeting package

Equipment : stationary, generator, refrigerator, freezer, fishing net,

Transport Vehicle : Air ticket, Vehicle procurement, Rental Car, Airport transport, local transport, transport team, boat,

Consultancy : Consultant, expert, legal permit

Contractor/Physical Development : Building, storage, house guard,

Maintenance Cost : Maintenance cost, repair cost

MONEV Cost : Preparation cost, Socialized, Monitoring, audit, Communication

Training : module training
H. Include a disbursement schedule with time-bound milestones.

<table>
<thead>
<tr>
<th>Project Objective/Component</th>
<th>Time-bound milestones disbursement Schedule per objective - Costs in USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Year 2</td>
</tr>
<tr>
<td>The mapping of fishing ground area as integrated with the traditional knowledge of local fisherman and institutional reinforcement for the fishermen groups</td>
<td>109,092.89</td>
</tr>
<tr>
<td>Improvement of shallow marine ecosystems for Fisherman resilience and alternative fishing locations</td>
<td>115,689.33</td>
</tr>
<tr>
<td>Alternative economic development in coastal areas that are climate-resilient by improving technology in the fishery and marine fields</td>
<td>-</td>
</tr>
<tr>
<td>The development of supporting facilities to anticipate coastal flooding and tidal wave and supporting facilities to increase sale value of the fish the fishermen catch</td>
<td>-</td>
</tr>
<tr>
<td>Project Execution costs</td>
<td>34,563.26</td>
</tr>
<tr>
<td>Administrative Cost (8.5)</td>
<td>19,243.30</td>
</tr>
<tr>
<td>Institution Administrative Costs (9.5%)</td>
<td>24,637.82</td>
</tr>
<tr>
<td>Total Fund Request</td>
<td>303,226.60</td>
</tr>
</tbody>
</table>
PART IV: ENDORSEMENT BY THE GOVERNMENT AND CERTIFICATION BY THE IMPLEMENTING ENTITY

A. Record of endorsement on behalf of the government

This program has been coordinated with the Government of Maluku Tengah Regency, the Government of Maluku Province, and the Government at Three Negeri.

<table>
<thead>
<tr>
<th>Name and Position</th>
<th>Time</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsul Maarib, S.Pi, MAP</td>
<td>15 December 2018</td>
<td>Letter of support attached</td>
</tr>
<tr>
<td>Head of the Fisheries Service Office of Maluku Tengah Regency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaran Soumena, SP</td>
<td>10 Juni 2019</td>
<td>Letter of support attached</td>
</tr>
<tr>
<td>Secretary of Negeri Lima</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saleh Tuharea</td>
<td>10 Juni 2019</td>
<td>Letter of support attached</td>
</tr>
<tr>
<td>Secretary of Negeri Ureng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ali Mahulette</td>
<td>10 Junir 2019</td>
<td>Letter of support attached</td>
</tr>
<tr>
<td>Secretary of Negeri Asilulu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Implementing Entity certification

I certify that this proposal has been prepared in accordance with guidelines provided by the Adaptation Fund Board, and prevailing National Development and Adaptation Plans (President Decree No. 16/2015; P.13/MENLHK/Setjen/OTL.0/1/2016; P.33/MENLHK/Setjen/Kum.1/3/2016; Indonesia Intended Nationally Determined Contribution/INDC; COP 21; Paris Agreement signed by Government of Indonesia; Book and Map of Information System of Vulnerability Index Data (SIDIK); Permen-KP No. 2 year 2013; Climate Change Adaptation National Action Plan) and subject to the approval by the Adaptation Fund Board commit to implementing the Project in compliance with the Environmental and Social Policy of the Adaptation Fund and on the understanding that the Implementing Entity will be fully (legally and financially) responsible for the implementation of this Project.

Each Party shall designate and communicate to the secretariat the authority that will endorse on behalf of the national government the projects and programmes proposed by the implementing entities.
Monica Tanuhandaru
Executive Director of Partnership for Governance Reform in Indonesia (Kemitraan)
Implementing Entity Coordinator

<table>
<thead>
<tr>
<th>Date: 5 August 2019</th>
<th>Tel. and email: +62-21-7279 9566; Monica.Tanuhandaru@kemitraan.or.id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Contact Person: Dewi Rizki</td>
<td></td>
</tr>
<tr>
<td>Tel. and Email: +62-21-7279 9566; Dewi.Rizki@kemitraan.or.id</td>
<td></td>
</tr>
</tbody>
</table>