Evaluating projects ex-post & emerging sustainability and resilience

Presented by: Jindra Cekan, PhD. (Valuing Voices), Meg Spearman and Caroline Holo
Date: October 2021
Aim of the ex-post training

♦ Introduce stakeholders to sustainability definitions, ex-post impact(s) evaluations, assumptions, principles, and examples from ex-post evaluations as well as resilience

♦ Introduce stakeholders to the AF-TERG ex-post evaluation process and share Phase 1 selection of ex-post pilot projects –Ecuador & Samoa

♦ Share aims of ex-post evaluations and main research questions, including theories of sustainability, resilience and preconditions for collaborative learning

♦ Introduce stakeholders to the co-creation process and focus on learning priorities in the pilot countries as well as select priority outputs/outcomes/impacts to be evaluated

♦ Discuss with the evaluator(s) preparation for fieldwork, including outline the array of methods to evaluate sustainability of outputs/outcomes and climate resilience (inc. aspects such as infrastructure, livelihoods, knowledge) based on secondary documentation and data

♦ Once outcomes/impacts set, discuss best methods to use in evaluation
Aim of the ex-post training

Training contents and structure

PART A – Introduction to ex-post evaluations, resilience and the piloting processes

A1- Understanding ex-post & resilience evaluations
• Sustainability and ex-post sustainability
• Ex-post evaluation, CCA and resilience

A2- Introduction to project selection and methods for the ex-post & resilience evaluations pilots
• AF-TERG process for ex-post evaluations
• Project selection and methods for ex-post (inc. methods for resilience analysis)

A3- Understanding processes for evaluations pilots: co-creating learning with stakeholders
• Co-creation process
• Ex-post in practice: research questions & process
• Preparatory work and steps for pilot ex-posts

PART B – Discussing country-specific outcomes

B1- Defining learning priorities and outcomes
• Data review
• Theory of Sustainability
• Mapping processes

B2- Selecting measurable outcomes
• Outcome/output review for outcome selection
• Tracing outcomes to sustainability and resilience

PART C – Developing country-specific methods and approaches

• Choice and discussion of field methods
• Application of resilience framework
• Methodological considerations during fieldwork
Introduction
Co-creation process for ex-post evaluations (reminder)

STEP 1
Define the purpose, scope and initial design of the post-project evaluation, and understanding conditions for the field work

STEP 2
Determine learning priorities and outcomes to evaluate for specific country pilots via collaboration

STEP 3
Given the outcomes chosen, what methods to evaluate outcome sustainability and resilience?
Co-creation process for ex-post evaluations

The ex-post evaluation follows a Co-creation process

STEP 1
Define the purpose, scope and initial design of the post-project evaluation, and understanding conditions for the field work

STEP 2
Determine learning priorities and outcomes to evaluate for specific country pilots via collaboration

STEP 3
Given the outcomes chosen, what methods to evaluate outcome sustainability and resilience?
Co-creation process for ex-post evaluations

What outcomes from the final evaluations are the learning priorities to evaluate?
What impact(s) /outcome(s) / output(s) can be evaluated?
With what methods?

Steps for outcomes selection process
- ✔ Outcome & site selection
- ✔ Measurement considerations
- ✔ Mapping process
- ✔ Theory of Sustainability
- ✔ Data review of possible outcomes

Expected outputs of process
- Project documentation and available data
- Theory of Sustainability
- Mapping (stakeholders, ecological, project)
- Measurable outputs/ outcomes/ impact(s)
PART B

Discussing learning priorities and country-specific outcomes/impacts

Evaluating sustainability & resilience: applying theory to practice

B1- Defining learning priorities and outcomes
B2- Selecting measurable outcomes
B1 – Defining learning priorities and outcomes for evaluation

Contents

• Selection of outcomes/ impact(s) and learning priorities : expected results and steps

 Identify priority impact(s)/outcomes/ outputs to be traced through mapping theories of sustainability, and resilience

• Detailed steps for outcome selection, including

 Document and data review
 Theory of Sustainability
 Mapping processes
Process for selection of outcomes to evaluate

✔ Review data of possible outcomes/outputs that could be evaluated ex-post
What does this step entail?

1. Review document & project data for possible choice of outcome/ output
 - participatory process with a project logic model
 - consult available data to provide background on the project and its implementation

2. Revisit the original Theory of Change (ToC)
 - ensure project Impact = Adaptation Fund’s Impact
 - identify assumptions of ToC about anticipated drivers and barriers of sustainability ex-post
 - identify assumptions of ToC vis-à-vis climate shocks and stresses

3. Examine the Sustainability ratings that were projected at final evaluation and the assumptions at project design to understand what needs to be confirmed or revisited at ex-post
Pre-select outcomes, outputs, and impact to evaluate
based on project secondary data documentation review

The following documents will be consulted to provide background on the project and its implementation:

- Project Proposal,
- Final Evaluation, Baseline and Midterm Reports,
- Sustainability ratings (if exists),
- List of Assets/ Infrastructure created,
- Capacities Gained (documented knowledge change used),
- Monitoring and Results Reports (where relevant, Vulnerability Assessment Mapping),
- If quantitative mixed methods, M&E including sampling and disaggregated data from the final evaluation by project site in disaggregated form
- Exit strategies guidelines used,
- Other documents as per co-creation process?
Reminder: **HOW DO YOU REVISIT THE TOC?**

- Ensure project Impact = Adaptation Fund’s Impact
- Identify assumptions about anticipated drivers and barriers of sustainability ex post
- Identify assumptions about climate shocks and stresses
Revisiting the ToC: Example of a ToC for a Belize CCA project

Drivers: Project validates and builds on baseline; prioritizes investments in precursor activities that drive parallel processes in support of incremental results.

Drivers: Project secures technical capacity; employs adaptive implementation strategies; supports policy & regulatory processes; ensures due diligence in alternative livelihoods; evaluates BCC success.

Drivers: Project assertively engages project partners in establishing the basis for sustaining and up-scaling outcomes in support of CC adaptation measures; systematic monitoring of outcomes; systematization of results and lessons learnt.

Components/ Activities

Component 1: Improving the Protection Regime of Marine and Coastal Ecosystems

Component 2: Promotion of viable alternative livelihoods for affected users of the reef

Component 3: Raising awareness and building local capacity

Intermediate Results

1.1 The target MPAs are effectively managed as recorded by the Management Effectiveness Tracking Tool

1.2 At least 3 restored coral sites, with resilient varieties grown in coral nurseries (with each site measuring 300 m2)

1.3 Coastal developments adhering to the development guidelines of the ICZM Plan

2.1 Alternative livelihoods Subprojects developed

2.2 Persons participating in training based on training needs assessment and 30% of trainees are women;

3.1 Behavior change comms campaigns conducted at all the target fishing communities

Intermediate States

IS1: Effective public policies and regulatory framework leading to improved adaptive management response in support of ICZM; coastal resources restored; reduced user conflicts in coastal zone; and accountability improved

IS2: Sustainable livelihoods lead to reduce stresses on coastal resources and behaviour change leading to voluntary compliance by coastal resource users and public advocacy for ICZM.

IS3: Adaptation measures in support of increased resilience are quantifiable and are being quantified to demonstrate impact on resilience.

Outcomes

1.0 MPAs & replenishment zones expanded and secured in strategically selected locations

2.0 Coastal zones effectively managed

3.0 Livelihoods of affected users of the reef diversified

4.0 The value of marine conservation and impacts of CC are understood

Project Objective

Priority ecosystem based marine conservation and climate adaptation measures implemented to strengthen the climate resilience of the Belize barrier reef system

Assumptions: Enabling legislative framework facilitates project activities; Organizations have the capacity to execute MCCAP counterpart responsibilities; lessons from previous alternative livelihoods attempts are given due consideration; efficient procurement processes; baseline indicators are relevant and robust, and performance indicators are realistic and achievable

Assumptions: Stakeholders support expansion of replenishment zones; policy makers embrace project objectives and processes; ICZMP implementation can be effectively measured; methods used in coral restoration are sound; alternative livelihoods go beyond training and startup and are market-driven; BCC is target and audience-driven

Assumptions: Replenishment zones produce intended CCA results; there is tangible evidence of effective coastal zone management and adherence to ICZM Plan; resilient corals are growing well; there is evidence of meaningful supplementary income to fishing households from alternative livelihoods, coupled to reduce violation and infractions to no-fishing zones of MPAs.
Revisiting the ToC: Example of a ToC for a Belize CCA project

Identify assumptions of ToC about drivers and barriers of sustainability:
Belize assumed: (i) Technical capacity continued; (ii) Partners sustained; and (iii) Up-scaled outcomes and Monitoring continued.

Example of barrier:
No funding / staff available to support capacity (a driver can become a barrier).

For illustrative purposes, only outputs/outcomes related to infrastructure and knowledge change have been selected to show process, as these relate to Samoa & Ecuador.

Identify assumptions of ToC, what should last and why:
Belize assumed: (i) Stakeholders supported expansion of zones; (ii) Implementation can be/has been measured; (iii) Coral restoration methods were good; and (iv) Livelihoods continue and incomes rise.

Outputs

1.0 MPAs & replenishment zones expanded and secured in strategically selected locations

2.0 Coastal zones effectively managed

3.0 Livelihoods of affected users of the reef diversified

4.0 The value of marine conservation and impacts of CC are understood

Outcomes

Intermediate States

IS1: Effective public policies and regulatory framework leading to improved adaptive management response in support of ICZM; coastal resources restored; reduced user conflicts in coastal zone; and accountability improved.

IS2: Sustainable livelihoods lead to reduce stresses on coastal resources and behaviour change leading to voluntary compliance by coastal resource users and public advocacy for ICZM.

IS3: Adaptation measures in support of increased resilience are quantifiable and are being quantified to demonstrate impact on resilience.

Project Objective

Ensure impact = AF impact:

Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”

Ultimate ex-post aim:

Evaluate sustainability (of outputs) leading to outcomes and impacts, inc. AF Impact.

Drivers: Project secures technical capacity; employs adaptive implementation strategies; supports policy & regulatory processes; ensures due diligence in alternative livelihoods; evaluates BCC success.

Drivers: Project assertively engages project partners in establishing the basis for sustaining and up-scaling outcomes in support of CC adaptation measures; systematic monitoring of outcomes; systematization of results and lessons learnt.

Assumptions: Stakeholders support expansion of replenishment zones; policy makers embrace project objectives and processes; ICZMP implementation can be effectively measured; methods used in coral restoration are sound; alternative livelihoods go beyond training and startup and are market-driven; BCC is target and audience-driven.

Assumptions: Replenishment zones produce intended CCA results; there is tangible evidence of effective coastal zone management and adherence to ICZM Plan; resilient corals are growing well; there is evidence of meaningful supplemental income to fishing households from alternative livelihoods, coupled to reduce violation and infractions to no-fishing zones of MPAs.

To check: Have drivers become barriers?

Examples of barrier:

1. Technical capacity continued?
2. Partners sustained?
3. Up-scaled outcomes and Monitoring continued?

Component 1: Improving Ecosystems & Marine Protection Regime of Belize

Component 2: Promotion of Viable alternative livelihoods for affected users of the reef

Component 3: Raising awareness and building local capacity
Identify assumptions regarding theory of change

Underlying assumptions about sustainability of outcomes

<table>
<thead>
<tr>
<th>Known/considered risks to sustainability, as stated in the Terminal Evaluation, e.g.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Financial</td>
</tr>
<tr>
<td>• Political</td>
</tr>
<tr>
<td>• Socio-political</td>
</tr>
<tr>
<td>• Socio-economic</td>
</tr>
<tr>
<td>• Institutional</td>
</tr>
<tr>
<td>• Specific risks to communities/beneficiaries</td>
</tr>
<tr>
<td>• Environmental risks</td>
</tr>
<tr>
<td>• ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Presence of factors enabling sustainability at project closing (and beyond), e.g.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Partnerships/alliances formed</td>
</tr>
<tr>
<td>• Follow-on financing</td>
</tr>
<tr>
<td>• New policy/revised policy</td>
</tr>
<tr>
<td>• Leadership buy-in</td>
</tr>
<tr>
<td>• Local ownership/uptake and continued use of project strategies</td>
</tr>
<tr>
<td>• ...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What information from the desk review and initial discussions with the EE and IE can be gathered?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example types of underlying assumptions to be tested in the field:</td>
</tr>
<tr>
<td>• Risk levels: Were (climate and non-climate) projections accurate?</td>
</tr>
<tr>
<td>• Project design/approach: Did the project strategy play out as planned? Why or why not?</td>
</tr>
<tr>
<td>• Engagement/involvement: Did the stakeholders fulfill expected roles?</td>
</tr>
<tr>
<td>• Political climate: Did leadership stay interested? Were policies helping or hindering sustainability?</td>
</tr>
</tbody>
</table>
Identify assumptions regarding theory of change

Ecuador example: underlying assumptions about climate risks

The evaluation of sustainability refers to the analysis of risk factors that could have incidence in the permanence or consolidation of the outcomes and the Project’s expected impact. Risks about climate change impacts can give an idea of how well would socio-ecological (human and natural) systems withstand climate disturbances?

<table>
<thead>
<tr>
<th>Rates of sustainability risk</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutional Framework and Governability Risks</td>
<td>Moderately Improbable</td>
</tr>
<tr>
<td>Sustainability risks of accomplishments by communities and beneficiaries of the project</td>
<td>Moderately Improbable</td>
</tr>
<tr>
<td>Financing risks</td>
<td>Moderately Probable</td>
</tr>
<tr>
<td>Socio-political risks</td>
<td>Moderately Probable</td>
</tr>
<tr>
<td>Environmental and uncertainty of climate change impact risks</td>
<td>Moderately Probable</td>
</tr>
</tbody>
</table>

The main environmental risks faced by areas of FORECCSA project are derived from global warming, environmental contamination, destruction of forests, diversification, floods, affectation of water sources, greenhouse effect, and decreased biodiversity.

e.g.
- use of chemical products in flower companies
- decrease in water volume and loss of topsoil due to poor agricultural practices
Examining the sustainability ratings: Ecuador example

Design fieldwork to test sustainability projections/ ratings from final evaluations

FORECCSA project: Enhancing resilience of communities to the adverse effects of climate change on food security, in Pichincha Province and the Jubones River basin

Examples of projected sustainability to verify:

1. “The fact that most beneficiaries, especially women, have been trained in food security, have started to have their own orchard products and have modified their diet forming a habit, is another factor that guarantees permanence of FORECCSA’s achievements.”

To check:

- Confirm sustainability of orchards production, and subsequent income increase levels and self-consumption of garden products.
Examining the sustainability ratings: Ecuador example

Design fieldwork to test sustainability projections/ ratings from final evaluations

FORECCSA project: Enhancing resilience of communities to the adverse effects of climate change on food security, in Pichincha Province and the Jubones River basin

Examples of projected sustainability to verify:

"The expected outcomes of the two components of the FORECCSA project have been achieved satisfactorily:
- increase awareness of communities in managing climate change risks and
- enhance their ability to adapt and respond to the impacts of climate change
This allows to foresee a high probability that these communities will maintain what has been achieved."

To check:

• Confirm awareness of climate change risks vs level at closure;
• Document climate shocks and actual community and household adaptation and response ex-post closure
Examining the sustainability ratings: Ecuador example

Design fieldwork to test sustainability projections/ ratings from final evaluations

FORECCSA project: Enhancing resilience of communities to the adverse effects of climate change on food security, in Pichincha Province and the Jubones River basin

Examples of projected sustainability to verify:

“*The high level of direct participation of beneficiaries during design and implementation phases, the resulting level of empowerment and commitment that followed, and the knowledge and increased resilience gained make beneficiaries and the base organizations likely to guarantee sustainability of the outcomes obtained.*”

To check:

- Confirm sense of community empowerment through examples of independent actions of base orgs, building on intervention (activities) and results, even if emerging resources, capacities, partnerships, etc.
Process for selection of outcomes to evaluate

✔ Revise Theory of Change into a Theory of Sustainability and pre-select outcomes linked to assets and capacities

✔ Review data of possible outcomes/outputs that could be evaluated ex-post
Developing a Theory of Sustainability (ToS)

What does this step entail?

1. **Based on your document review and learning priorities, pre-select specific outputs and outcomes** of the ToC to determine the anticipated post-project Theory of Sustainability
 - consider the link with the Adaptation Fund impact
 - consider outputs and outcomes linked to assets and capacities

2. **Identify which assets and capacities are expected to be functioning**
 given changes in the intervening years and identified barriers and drivers to sustainability
 - consider what can affect the sustainability of assets and capacities
 - consider data indicating aspects of functioning and sustainability

3. **Identify existing data for the pre-selected outputs and outcomes**
 - consider indicators and measurement for the identified assets & capacities

4. **Confirm that the drivers & barriers that existed in the theory of change are still true.**
Assumptions:

Enabling legislative framework facilitates project activities; Organizations have the capacity to execute MCCAP counterpart responsibilities; lessons from previous alternative livelihoods attempts are given due consideration; efficient procurement processes; baseline indicators are relevant and robust, and performance indicators are realistic and achievable.

Replenishment zones produce intended CCA results; there is tangible evidence of effective coastal zone management and adherence to ICZM Plan; resilient corals are growing well; there is evidence of meaningful supplementary income to fishing households from alternative livelihoods, coupled to reduce violation and infractions to no-fishing zones of MPAs.

Developing a ToS and identifying assets

Drivers:
- Project validates and builds on baseline; prioritizes investments in precursor activities that drive parallel processes in support of incremental results.
- Project secures technical capacity; employs adaptive implementation strategies; supports policy & regulatory processes; ensures due diligence in alternative livelihoods; evaluates BCC success.
- Project assertively engages project partners in establishing the basis for sustaining and up-scaling outcomes in support of CC adaptation measures; systematic monitoring of outcomes; systematization of results and lessons learnt.

Components/Activities

Component 1: Improving the Protection Regime of Marine and Coastal Ecosystems

1.1 The target MPAs are effectively managed as recorded by the Management Effectiveness Tracking Tool

1.2 At least 3 restored coral sites, with resilient varieties grown in coral nurseries (with each site measuring 300 m²)

1.3 Coastal developments adhering to the development guidelines of the ICZM Plan

Component 2: Promotion of viable alternative livelihoods for affected users of the reef

2.1 Alternative livelihoods Subprojects developed

2.2 Persons participating in training based on training needs assessment and 30% of trainees are women

Component 3: Raising awareness and building local capacity

3.1 Behavior change communication campaigns conducted at all the target fishing communities

3.2 Persons participating in training based on training needs assessment and 30% of trainees are women

Project Objective

1.0 MPAs & replenishment zones expanded and secured in strategically selected locations

2.0 Coastal zones effectively managed

3.0 Livelihoods of affected users of the reef diversified

4.0 The value of marine conservation and impacts of CC are understood

Intermediate States

IS1: Effective public policies and regulatory framework leading to improved adaptive management response in support of ICZM; coastal resources restored; reduced user conflicts in coastal zone; and accountability improved

IS2: Sustainable livelihoods lead to reduce stresses on coastal resources and behaviour change leading to voluntary compliance by coastal resource users and public advocacy for ICZM.

IS3: Adaptation measures in support of increased resilience are quantifiable and are being quantified to demonstrate impact on resilience.

Belize

- Objective 1.1: Marine protected areas (MPA) coverage increased to 20.2% of the Belize’s territorial sea
- Objective 1.3: Km of coastline under protection
- Objective 1.3: National surface of mangroves (ha)
- Intermediate outcome 1.3: At least 3 restored coral sites, with resilient varieties grown in coral nurseries (with each site measuring 300 m²)

Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”
Developing a ToS and identifying capacities

Drivers: Project validates and builds on baseline; prioritizes investments in precursor activities that drive parallel processes in support of incremental results.

Drivers: Project secures technical capacity; employs adaptive implementation strategies; supports policy & regulatory processes; ensures due diligence in alternative livelihoods; evaluates BCC success.

Drivers: Project assertively engages project partners in establishing the basis for sustaining and up-scaling outcomes in support of CC adaptation measures; systematic monitoring of outcomes; systematization of results and lessons learnt.

Assumptions:
- Enabling legislative framework facilitates project activities;
- Organizations have the capacity to execute MCCAP counterpart responsibilities;
- Lessons from previous alternative livelihoods attempts are given due consideration;
- Efficient procurement processes;
- Baseline indicators are relevant and robust, and performance indicators are realistic and achievable;
- Replenishment zones produce intended CCA results;
- There is tangible evidence of effective coastal zone management and adherence to ICZM Plan;
- Resilient corals are growing well;
- There is evidence of meaningful supplementary income to fishing households from alternative livelihoods, coupled to reduce violation and infractions to no-fishing zones of MPAs;
- Stakeholders support expansion of replenishment zones; policy makers embrace project objectives and processes; ICZMP implementation can be effectively measured; methods used in coral restoration are sound; alternative livelihoods go beyond training and startup and are market-driven; BCC is target and audience-driven;
- Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”

Components/Activities

Capacities (knowledge change):

Belize
- Project objective 3.1: % people with enhanced understanding of the value of marine conservation and impacts of climate change
- Project objective 3.1: % people with changed attitude after BCC campaigns or KAP surveys
- Intermediate outcome 1.9: Number of strategic planning workshops

Outputs

1.1 The target MPAs are effectively managed as recorded by the Management Effectiveness Tracking Tool

1.2 At least 3 restored coral sites, with resilient varieties grown in coral nurseries (with each site measuring 300 m2)

1.3 Coastal developments adhering to the development guidelines of the ICZM Plan

2.1 Alternative livelihoods Subprojects developed

2.2 Persons participating in training based on training needs assessment and 30% of trainees are women

3.1 Behavior change comms campaigns conducted at all the target fishing communities

3.0 Livelihoods of affected users of the reef diversified

4.0 The value of marine conservation and impacts of CC are understood

Intermediate States

IS1: Effective public policies and regulatory framework leading to improved adaptive management response in support of ICZM; coastal resources restored; reduced user conflicts in coastal zone; and accountability improved

IS2: Sustainable livelihoods lead to reduce stresses on coastal resources and behaviour change leading to voluntary compliance by coastal resource users and public advocacy for ICZM.

IS3: Adaptation measures in support of increased resilience are quantifiable and are being quantified to demonstrate impact on resilience.

Project Objective

Intermediate Results

1.0 MPAs & replenishment zones expanded and secured in strategically selected locations

2.0 Coastal zones effectively managed

3.0 Livelihoods of affected users of the reef diversified

4.0 The value of marine conservation and impacts of CC are understood

Outputs

- Capacities (knowledge change):
 - Belize:
 - Project objective 3.1: % people with enhanced understanding of the value of marine conservation and impacts of climate change
 - Project objective 3.1: % people with changed attitude after BCC campaigns or KAP surveys
 - Intermediate outcome 1.9: Number of strategic planning workshops

- Assets:
 - Project objective 3.1: % people with enhanced understanding of the value of marine conservation and impacts of climate change
 - Project objective 3.1: % people with changed attitude after BCC campaigns or KAP surveys
 - Intermediate outcome 1.9: Number of strategic planning workshops

- Capacities:
 - Project objective 3.1: % people with enhanced understanding of the value of marine conservation and impacts of climate change
 - Project objective 3.1: % people with changed attitude after BCC campaigns or KAP surveys
 - Intermediate outcome 1.9: Number of strategic planning workshops

- Outputs:
 - Project objective 3.1: % people with enhanced understanding of the value of marine conservation and impacts of climate change
 - Project objective 3.1: % people with changed attitude after BCC campaigns or KAP surveys
 - Intermediate outcome 1.9: Number of strategic planning workshops

- Intermediate States:
 - Effective public policies and regulatory framework leading to improved adaptive management response in support of ICZM; coastal resources restored; reduced user conflicts in coastal zone; and accountability improved
 - Sustainable livelihoods lead to reduce stresses on coastal resources and behaviour change leading to voluntary compliance by coastal resource users and public advocacy for ICZM.
 - Adaptation measures in support of increased resilience are quantifiable and are being quantified to demonstrate impact on resilience.

- Project Objective:
 - MPAs & replenishment zones expanded and secured in strategically selected locations
 - Coastal zones effectively managed
 - Livelihoods of affected users of the reef diversified
 - The value of marine conservation and impacts of CC are understood

Assumptions:
- Enabling legislative framework facilitates project activities; Organizations have the capacity to execute MCCAP counterpart responsibilities; lessons from previous alternative livelihoods attempts are given due consideration; efficient procurement processes; baseline indicators are relevant and robust, and performance indicators are realistic and achievable;
- Stakeholders support expansion of replenishment zones; policy makers embrace project objectives and processes; ICZMP implementation can be effectively measured; methods used in coral restoration are sound; alternative livelihoods go beyond training and startup and are market-driven; BCC is target and audience-driven;
- Replenishment zones produce intended CCA results; there is tangible evidence of effective coastal zone management and adherence to ICZM Plan; resilient corals are growing well; there is evidence of meaningful supplementary income to fishing households from alternative livelihoods, coupled to reduce violation and infractions to no-fishing zones of MPAs.
Developing a ToS and identifying assets

Reviewing sustainability of assets: example of infrastructure assessment

Check what can affect the sustainability of infrastructure

For supply systems:

• **Management/ functioning Boards** – do they still exist? how do they function?
• **Access to supply** – do people pay their bills? does the fee limit access for the more vulnerable? was that already the case or did inequality of access worsen?
• **Maintenance** - are there enough funds for maintenance?
• **Service** - what is the level of service *eg. water / electricity 24/7 or specific hours?* is the service seasonal *e.g. a road is harder to pass in rainy season?*
• **Demand** – did the infrastructure satisfy an existing demand, does it replace and alternate supply, or did it develop new demand?

For soft infrastructure:

• **Capacity** – was there any training, capacity development and staffing to maintain use
• **Maintenance** – is there any payment scheme, ownership, etc
Developing a ToS and identifying assets

Reviewing sustainability of assets: example of infrastructure assessment

Check aspects of sustainability by verifying data availability on:

For road & water infrastructures:
- evaluate maintenance and impact
 - Operations and maintenance (control and repairs)
 - Maintenance budget (amounts & availability or disbursement) or prevention of damage from shocks
 - ‘Climate proofing measures’ for roads
 - Staff training on maintenance
 - Long-term monitoring and maintenance
 e.g. Monitoring coastal sedimentation/ flood protection/ escape routes
 e.g. Monitoring of IWS water supply and quality
 - Impact on livelihoods e.g. tourism, farming, access to social services

For evaluation of capacity to withstand climate shocks:
- evaluate restoration capacity or prevention
 If shock:
 - Budget allocation for repairs and maintenance
 - Extent of damage after shock
 - Evidence of relocation
 - Recovery to previous conditions
 If no shock:
 - Budget for prevention
 - Materials used e.g. sustained quality of wave breakers
 - Planning for end-of-life of material
Developing a ToS and identifying assets and capacities

ECUADOR

Component 1: awareness on risks of climate change
- training of population
- adaptation plans with emphasis on food security
- implementation of early alert systems.

Component 2: creation of physical assets that reduce variability of climate change
- provisioning and strengthening of land irrigation
- agroecological gardens and orchards development

SAMOA

Component 1: development of CIM plans
- Revision of CIM plans
- Relocation plans design

Component 2: creation of physical assets that reduce community vulnerability
- Coastal infrastructure
- Shoreline & flood protection
- Water infrastructure

Component 3: institutional and capacity improvements
- Training on climate risks
- Guidance on procedures

OUTCOMES

- Build ToS from recreated ToC
- Identify assets and capacities that are expected to be functioning
- Confirm drivers or barriers for sustainability of outcomes

ECUADOR

Reduce vulnerability and food insecurity in relation to adverse effects of climate change in communities and ecosystems of the most vulnerable cantons

SAMOA

Strengthen ability of coastal communities to make informed decisions about climate-change induced hazards and undertake concrete adaptation actions

Component 1: awareness on risks of climate change

Component 2: creation of physical assets that reduce variability of climate change

Component 3: institutional and capacity improvements

Applied examples: Ecuador and Samoa projects
Ecuador: FORECCSA project

The following ToS is based on a ToC reconstructed by the consultants. It is only illustrative and should not be considered as final or complete.
Developing a ToS: Ecuador example (FORECCSA project)

Drivers:
- There is a high probability that communities will maintain what has been achieved because of their increased awareness in managing climate change risks.
- The fact that most beneficiaries have been trained in food security, have started to have their own orchard and have modified their diet guarantees permanence of project's achievements.
- The high level of direct participation and of empowerment of communities guarantee sustainability of the outcomes obtained.

Components/Activities

Component 1: awareness on risks of climate change
- Training of population
- Adaptation plans with emphasis on food security
- Implementation of early alert systems.

Component 2: creation of physical assets that reduce variability of climate change
- Provisioning and strengthening of land irrigation
- Agroecological gardens and orchards development

Outputs
- Workshops on climate risks and food insecurity conducted
- Community specific adaptation measures are designed
- Alert systems and climate events monitoring are available at community level
- Critical sectors of community irrigation channels are improved/ constructed
- Orchards are planted and agroecological gardens are incorporated in family farms

Outcomes
- Increased knowledge and understanding of climate risk and management
- Increased capacity at the community and institutional levels to manage climate risks.
- Increased access to information on climate events and risks
- Increased access to irrigation water for small rural farmers
- Increased food production in the dry season

Intermediate States
- **IS1:** There is an increased awareness of risk of climate change and food insecurity in communities; and institutions and communities can take action owing to the identification of risk situations in the medium and long term
- **IS2:** Diet changes and food consumption diversifies; Small rural farmers have greater access to food through increased production during dry seasons and their food security improves

Project Objective
- Reduce vulnerability and food insecurity in relation to adverse effects of climate change in communities and ecosystems of the most vulnerable cantons

Barriers:
- There will not be enough technical assistance for proper implementation of some activities e.g. seed planting
- After having accessed irrigation water tanks, some ex-employees of flower companies have left their jobs to cultivate their own parcels, in detriment of customary production
- Focus groups carried out at the four provinces showed that only 34% and 28%, consider that their knowledge to manage climate change and food security risks is, respectively very good and good [while] 22% and 13% rated it regular or poor.
Developing a ToS: Ecuador example (FORECCSA project)

Components/Activities

<table>
<thead>
<tr>
<th>Assets (infrastructure): Ecuador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome 2: Community adaptation asset score (natural and physical)</td>
</tr>
<tr>
<td>Output 4: Vulnerable development sector services and infrastructure assets strengthened in response to climate change impacts</td>
</tr>
</tbody>
</table>

Component 2: Creation of physical assets that reduce variability of climate change:
- Orchards are planted and agroecological gardens are incorporated in family farms
- Critical sectors of community irrigation channels are improved/constructed
- Alert systems and climate events monitoring are available at community level

Drivers: The fact that most beneficiaries have been trained in food security, have started to have their own orchard and have modified their diet guarantees permanence of project’s achievements.

Outputs

- Workshops on climate risks and food insecurity conducted
- Community specific adaptation measures are designed

Outcomes

- Increased knowledge and understanding of climate risk and management
- Increased capacity at the community and institutional levels to manage climate risks.
- Increased access to information on climate events and risks

Intermediate States

- IS1: There is an increased awareness of risk of climate change and food insecurity in communities and institutions and communities can take action owing to the identification of risk situations in the medium and long term
- IS2: Diet changes and food consumption diversifies; small rural farmers have greater access to food through increased production during dry seasons and their food security improves

Project Objective

- Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”

Barriers:
- Focus groups carried out at the four provinces showed that only 34% and 28%, consider that their knowledge to manage climate change and food security risks is, respectively very good and good (while) 22% and 13% rated it regular or poor.
- After having accessed irrigation water tanks, some ex-employees of flower companies have left their jobs to cultivate their own parcels, in detriment of customary production
- There will not be enough technical assistance for proper implementation of some activities e.g. seed planting
Developing a ToS: Ecuador example (FORECCSA project) /Capacities

Components/ Activities

Component 1: awareness on risks of climate change
- training of population
- adaptation plans with emphasis on food security
- implementation of early alert systems

Outputs

- Workshops on climate risks and food insecurity conducted
- Community specific adaptation measures are designed
- Alert systems and climate events monitoring are available at community level
- Critical sectors of community irrigation channels are improved/ constructed
- Orchards are planted and agroecological gardens are incorporated in family farms

Outcomes

- Increased knowledge and understanding of climate risk and management
- Increased capacity at the community and institutional levels to manage climate risks
- Increased access to information on climate events and risks
- Increased access to irrigation water for small rural farmers
- Increased food production in the dry season

Intermediate States

- IS1: There is an increased awareness of risk of climate change and food insecurity in communities; and institutions and communities can take action owing to the identification of risk situations in the medium and long term
- IS2: Diet changes and food consumption diversifies; Small rural farmers have greater access to food through increased production during dry seasons and their food security improves

Project Objective

- Increased capacity at the community and institutional levels to manage climate risks
- Increased food production in the dry season

Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”

Capacities (knowledge change):

Ecuador:
- Outcome 2: Percentage of households in targeted parishes with increased capacity to manage climate risk desegregated by gender

Barriers:
- there will not be enough technical assistance for proper implementation of some activities e.g. seed planting
- After having accessed irrigation water tanks, some ex-employees of flower companies have left their jobs to cultivate their own parcels, in detriment of customary production
- Focus groups carried out at the four provinces showed that only 34% and 28%, consider that their knowledge to manage climate change and food security risks is, respectively very good and good [while] 22% and 13% rated it regular or poor.
Developing a ToS: Ecuador example (FORECCSA project)

Drivers: there is a high probability that communities will maintain what has been achieved because of their increased awareness in managing climate change risks.

Drivers: The fact that most beneficiaries have been trained in food security, have started to have their own orchard and have modified their diet guarantees permanence of project’s achievements.

Drivers: The high level of direct participation and of empowerment of communities guarantee sustainability of the outcomes obtained.

Barriers: there will not be enough technical assistance for proper implementation of some activities e.g. seed planting.

Barriers: After having accessed irrigation water tanks, some ex-employees of flower companies have left their jobs to cultivate their own parcels, in detriment of customary production.

Barriers: Focus groups carried out at the four provinces showed that only 34% and 28%, consider that their knowledge to manage climate change and food security risks is, respectively very good and good [while] 22% and 13% rated it regular or poor.

Components/ Activities

- Component 1: awareness on risks of climate change
 - training of population
 - adaptation plans with emphasis on food security
 - implementation of early alert systems.

- Component 2: creation of physical assets that reduce variability of climate change
 - provisioning and strengthening of land irrigation
 - agroecological gardens and orchards development

Outputs

- Workshops on climate risks and food insecurity conducted
- Community specific adaptation measures are designed
- Alert systems and climate

Outcomes

- Increased knowledge and understanding of climate risk and management
- Increased capacity at the community and institutional levels to manage climate risks.
- Alert systems and climate

Intermediate States

- IS1: There is an increased awareness of risk of climate change and food insecurity in communities; and institutions and communities can take action owing to the identification of risk situations in the medium and long term
- IS2: Diet changes and food consumption diversifies; Small rural farmers have greater access to food through increased production during dry seasons and their food security improves

Project Objective

- Reduce vulnerability and food insecurity in relation to adverse effects of climate change in communities and ecosystems of the most vulnerable cantons

Reminders:

- You can evaluate both the project impact’s and Adaptation Fund’s impact (these might not be the same)
- Confirm that the drivers & barriers that existed in the theory of change are still true.

Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”
Developing a ToS and identifying assets and capacities (2)

Samoa: Coastal management project

The following ToS is based on a ToC reconstructed by the consultants. It is only illustrative and should not be considered as final or complete.
Developing a ToS: Samoa example (Coastal management project)

Drivers: all ministries are committed to getting involved in CIM plans’ rolling-out. It remains to be seen whether this willingness will be turned into new institutional and organizational mechanisms that will ensure the sustainability of CIM plans as the new Government tool for district development plans.

Components/ Activities

Component 1: development of CIM plans
- Revision of CIM plans
- Relocation plans design

Component 2: creation of physical assets that reduce community vulnerability
- Coastal infrastructure
- Shoreline & flood protection
- Water infrastructure

Component 3: institutional and capacity improvements
- Training on climate risks
- Guidance on procedures

Outputs

- CIM Plans reviewed and updated with CC risks
- Village relocation handbook is developed
- Coastal roads and related infrastructure are improved
- Shoreline and flood protection measures are introduced
- Water supply infrastructures are improved
- Climate risk assessment trainings are conducted
- CIM Plan management institutional structure is set up and procedures are revised

Outcomes

- Increased preparation of districts to climate risks
- Relocation of vulnerable communities is facilitated
- Increased protection of the road from coastal erosion
- Alleviation of flooding of main roads and properties during heavy rain
- Increased access to water and support during water shortage period
- Improved understanding of CC assessment and planning processes
- Improved regulatory procedures for physical works implementation

Intermediate States

- **IS1:** Awareness and ownership of coastal adaptation and climate risk reduction processes are strengthened at community and national levels and coastal communities involved perceive risk reduction to climate-induced hazard
- **IS2:** Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks
- **IS3:** Coordination for the implementation of CIM Plans increases and institutional capacity of government sectors to integrate climate risk into coastal management policies & processes is strengthened

Project Objective

Strengthen ability of coastal communities to make informed decisions about climate-change induced hazards and undertake concrete adaptation actions

Barriers: some infrastructures show signs of weaknesses (e.g. need to replenish/repair wave breakers after storm surges) or unexpected effects (e.g. accelerating erosion on the side of coastal infrastructures, unexpected sand accumulation in front of flooding protections).

Barriers: the government is reforming the MNRE and if this reform drags on for some time, this will be detrimental in the following-up, updating and completion of CIM plans, and may add further confusion to communities about who might be their primary Government interlocutor for completing CIM plan priorities.

Barriers: there is a need for increased formal budget allocation to monitor and oversee the implementation of CIM plans.
Developing a ToS: Samoa example (Coastal mgmt project): Assets

Drivers: all ministries are committed to getting involved in CIM plans’ rolling-out. It remains to be seen whether this willingness will be turned into new institutional and organizational mechanisms that will ensure the sustainability of CIM plans as the new Government tool for district development plans.

Drivers: Village representatives do have the ability to make informed decisions through CIM plans but that does not mean that they will: they are still prone to risks because of lack of funding to respond to CIM plan priorities but now both communities and Government do have a framework for action for the coming years (CIM plans were estimated valid for 10 years).

Barriers: the government is reforming the MNRE and if this reform drags on for some time, this will be detrimental in the following-up, updating and completion of CIM plans, and may add further confusion to communities about who might be their primary Government interlocutor for completing CIM plan priorities.

Barriers: there is a need for increased formal budget allocation to monitor and oversee the implementation of CIM plans.

Components/ Activities

Component 1: development of CIM plans
- Revision of CIM plans
- Relocation plans design

Component 2: creation of physical assets that reduce community vulnerability
- Coastal infrastructure
- Shoreline & flood protection
- Water infrastructure

Component 3: institutional and capacity improvements
- Training on climate risks
- Guidance on procedures

Outputs

CIM Plans reviewed and updated with CC risks
Village relocation handbook is developed

Outputs

Increased preparation of districts to climate risks
Relocation of vulnerable communities is facilitated

 Outputs

Increased protection of the road from coastal erosion
Alleviation of flooding of main roads and properties during heavy rain

Outputs

Increased access to water and support during water shortage period

Outcomes

Increased preparation of districts to climate risks
Relocation of vulnerable communities is facilitated

Outcomes

Increased protection of the road from coastal erosion
Alleviation of flooding of main roads and properties during heavy rain

Outcomes

Increased access to water and support during water shortage period

Intermediate States

IS1: Awareness and ownership of coastal adaptation and climate risk reduction processes are strengthened at community and national levels and coastal communities involved perceive risk reduction to climate-induced hazard.

IS2: Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks.

IS3: Coordination for the implementation of CIM Plans increase and institutional capacity of government sectors to integrate climate risk into coastal management policies & processes is strengthened.

Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”
Developing a ToS: Samoa example (Coastal mgmt project): Capacities

Drivers: all ministries are committed to getting involved in CIM plans’ rolling-out. It remains to be seen whether this willingness will be turned into new institutional and organizational mechanisms that will ensure the sustainability of CIM plans as the new Government tool for district development plans.

Drivers: Village representatives do have the ability to make informed decisions through CIM plans but that does not mean that they will: they are still prone to risks because of lack of funding to respond to CIM plan priorities but now both communities and Government do have a framework for action for the coming years (CIM plans were estimated valid for 10 years).

Component 1: development of CIM plans
- Revision of CIM plans
- Relocation plans design

Component 2: creation of physical assets that reduce community vulnerability
- Coastal infrastructure
- Shoreline & flood protection
- Water infrastructure

Component 3: institutional and capacity improvements
- Training on climate risks
- Guidance on procedures

Outcomes:
- Increased preparation of districts to climate risks
- Relocation of vulnerable communities is facilitated
- Increased protection of the road from coastal erosion
- Alleviation of flooding of main roads and properties during heavy rain
- Increased access to water and support during water shortage period
- Improved understanding of CC assessment and planning processes
- Improved regulatory procedures for physical works implementation

Intermediate States:
- IS1: Awareness and ownership of coastal adaptation and climate risk reduction processes are strengthened at community and national levels and coastal communities involved perceive risk reduction to climate-induced hazard
- IS2: Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks
- IS3: Coordination for the implementation of CIM Plans increases and institutional capacity of government sectors to integrate climate risk into coastal management policies & processes is strengthened

Barriers: some infrastructures show signs of weaknesses (e.g., need to replenish/repair wave breakers after storm surges) or unexpected effects (e.g., accelerating erosion on the side of coastal infrastructures, unexpected sand accumulation in front of flooding protections).

Barriers: the government is reforming the MNRE and if this reform drags on for some time, this will be detrimental in the following-up, updating and completion of CIM plans, and may add further confusion to communities about who might be their primary Government interlocutor for completing CIM plan priorities.

Barriers: there is a need for increased formal budget allocation to monitor and oversee the implementation of CIM plans.

Capacities (knowledge change): Samoa
- Output 1.1: Village-led Coastal Infrastructures Management (CIM) Plans reviewed

Capacities (knowledge change): Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”
Developing a ToS: Samoa example (Coastal management project)

Drivers: all ministries are committed to getting involved in CIM plans' rolling-out. It remains to be seen whether this willingness will be turned into new institutional and organizational mechanisms that will ensure the sustainability of CIM plans as the new Government tool for district development plans.

Drivers: Village representatives do have the ability to make informed decisions through CIM plans but that does not mean that they will: they are still prone to risks because of lack of funding to respond to CIM plan priorities but now both communities and Government do have a framework for action for the coming years (CIM plans were estimated valid for 10 years).

Barriers: some infrastructures show signs of weaknesses (e.g. need to replenish/repair wave breakers after storm surges) or unexpected effects (e.g. accelerating erosion on the side of coastal infrastructures, unexpected sand accumulation in front of flooding protections).

Barriers: the government is reforming the MNRE and if this reform drags on for some time, this will be detrimental in the following-up, updating and completion of CIM plans, and may add further confusion to communities about who might be their primary Government interlocutor for completing CIM plan priorities.

Components/Activities

- **Component 1:** development of CIM plans
 - Revision of CIM plans
 - Relocation plans design

- **Component 2:** creation of physical assets that reduce community vulnerability
 - Coastal roads and related infrastructure are improved
 - Shoreline and flood protection

- **Component 3:** institutional and capacity improvements
 - Climate risk assessment trainings are conducted
 - Village relocation handbook is developed

Outputs

- CIM Plans reviewed and updated with CC risks
- Village relocation handbook is developed
- Coastal roads and related infrastructure are improved
- Shoreline and flood protection

Outcomes

- Increased preparation of districts to climate risks
- Relocation of vulnerable communities is facilitated
- Increased protection of the road from coastal erosion
- Alleviation of flooding of main roads and properties

Intermediate States

- **IS1:** Awareness and ownership of coastal adaptation and climate risk reduction processes are strengthened at community and national levels and coastal communities involved perceive risk reduction to climate-induced hazard
- **IS2:** Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks
- **IS3:** Coordination for the implementation of CIM Plans increase and institutional capacity of government sectors to integrate climate risk into coastal management policies & processes is strengthened

Project Objective

Strengthen ability of coastal communities to make informed decisions about climate-change induced hazards and undertake concrete adaptation actions.

REMINDER:

- You can evaluate both the project impact’s and Adaptation Fund’s impact (these might not be the same)
- Confirm that the drivers & barriers that existed in the theory of change are still true.

Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”
Stretch and drink break

Questions? Comments?
Process for selection of outcomes to evaluate

- Review data of possible outcomes/outputs that could be evaluated ex-post
- Revise Theory of Change into a Theory of Sustainability and pre-select outcomes linked to assets and capacities
- Refine outcome and site pre-selection through different types of mapping (stakeholders, project activities and areas, shocks and stresses)
What does this step entail?

1. **Map the key stakeholders** influencing and informing the sustainability of results
 - who is expected to positively sustain results or the contrary?

2. **Map project activities**
 - concentration of activities per area

3. **Map isolatability of activities from other implementers**

4. **Map shocks that would affect sustainability** pre and post closure by site.
 - local, regional, national, and international shocks (e.g. policy, economy, security)

All steps should be done first with main IE/EE national stakeholders, and reconfirmed in the field.
Mapping processes

(1) Stakeholder mapping

Draw a stakeholder map of organizations likely to sustain the results

- including partnerships, resources, and capacities to be sustained, how design & exit enabled this (e.g. who took over implementation ex-post?)

- capacity and commitment and structure of institutions assuming responsibility post project and relationships of those locally implementing.

- what conditions/inputs internal to the project implementation that were assumed at exit changed since closure?
Mapping processes

(1) **Stakeholder mapping**

- **Taking the network map stakeholders, map stakeholders onto the revised Theory of Sustainability** under the relevant outcome (e.g., Belize IZCM or MPAs stakeholders). Remember to do this by project site as they may differ. Both supporters & underminers should also be visited during fieldwork.
- **Map intensity of project activities (go there), and sites where few competing projects happened concurrently (isolating contribution).**

<table>
<thead>
<tr>
<th>Components/Activities</th>
<th>Outputs</th>
<th>Results</th>
<th>Outcomes</th>
<th>Intermediate States</th>
<th>Project Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IS1: Effective public policies and regulatory framework leading to improved adaptive management response in support of ICZM; coastal resources restored; reduced user conflicts in coastal zone; and accountability improved</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0 MPAs & replenishment zones expanded and secured in strategically selected locations</td>
<td>IS1: Effective public policies and regulatory framework leading to improved adaptive management response in support of ICZM; coastal resources restored; reduced user conflicts in coastal zone; and accountability improved</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2 At least 3 restored coral sites, with resilient varieties grown in coral nurseries (with each site measuring 300 m²)</td>
<td>IS2: Sustainable livelihoods lead to reduce stresses on coastal resources and behaviour change leading to voluntary compliance by coastal resource users and public advocacy for ICZM.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3 Coastal developments adhering to the development guidelines of the ICZM Plan</td>
<td>IS3: Adaptation measures in support of increased resilience are quantifiable and are being quantified to demonstrate impact on resilience.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.1 Alternative livelihoods Subprojects developed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.2 Persons participating in training based on training needs assessment and 30% of trainees are women;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.1 Behavior change comms campaigns conducted at all the target fishing communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.2 Coastal zones effectively managed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.3 Livelihoods of affected users of the reef diversified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.0 The value of marine conservation and impacts of CC are understood</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assumptions:
- Enabling legislative framework facilitates project activities. Organizations have the capacity to execute MCCAP counterpart responsibilities. Lessons from previous alternative livelihoods attempts are given due consideration; efficient procurement processes; baseline indicators are relevant and robust; and performance indicators are realistic and achievable.
- Stakeholders support expansion of replenishment zones; policy makers embrace project objectives and processes; ICZMP implementation can be effectively measured; methods used in coral restoration are sound; alternative livelihoods go beyond training and startup and are market-driven; BCC is target and audience-driven.
- Replenishment zones produce intended CCA results; there is tangible evidence of effective coastal zone management and adherence to ICZM Plan; resilient corals are growing well; there is evidence of meaningful supplementary income to fishing households from alternative livelihoods, coupled to reduce violation and infractions to no-fishing zones of MPAs.

Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”
Who are the key stakeholders who influenced or who were influenced by the project outcomes?

What are their respective levels of interest in the goals of the project?

What are their respective levels of influence or power (relative to other stakeholders) in affecting the goals of the project?
Explore whether identified stakeholders were engaged by the project, and how/in what ways;

- Were they engaged in alignment with their quadrant?
- Did any stakeholders change quadrants? When? Why?
- Have (new) key stakeholders emerged since project closing?

Assess whether stakeholders have changed quadrants since project closing and why

Examine how did (a lack of) understanding interest and influence dynamics (during or after the project) influence the sustainability of outcomes
What does it mean when a stakeholder changes quadrants? E.g.

- From “key player” (upper right) to “show consideration” (lower right)
- From “monitor” (lower left) to “show consideration” (lower right)
- From “meet their needs” (upper left) to “key player” (upper right) AND “monitor” (lower left)

A stakeholder analysis is another tool to understand HOW and WHY an outcome is (not) sustained.
(1) Stakeholder mapping

a. **Who is expected to positively sustain results, as well as those who could harmfully affect results since exit?**
 - mark stakeholder on the map with a + or a – and draw along the axis (next slide).
 - these could be internal to the project (e.g. donor, implementer, community) or external (e.g. wider government actors, private sector or others in the ecosystem).

b. **Map onto the Theory of Sustainability the key stakeholders (each activity by outputs/ outcomes and final impact(s)**
 - remember to do this by project site as they may differ.
Mapping processes

(1) Stakeholder mapping

- Identify sustainability assumptions: which stakeholders are likely to make things last (+) or not (-)
- Map out who should be talked to and test assumptions of sustainability

Belize project stakeholder map

IN VolVEMENT

10

against

FOR

- 5

+ 5

Stakeholder

Stakeholder

Stakeholder

Stakeholder

Example

Sustainability prospect is (-) because assumption of no resources

Sustainability prospect is (+) because assumption of benefits from MPA for users
(1) Stakeholder mapping: Ecuador example

<table>
<thead>
<tr>
<th>Organization</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptation Fund</td>
<td>National Meteorology and Hydrology Institute</td>
</tr>
<tr>
<td>WFP</td>
<td>National Risk Management Secretariat</td>
</tr>
<tr>
<td>MAE</td>
<td>Educational Establishments</td>
</tr>
<tr>
<td>Canton and Parish GADs</td>
<td>Consultants for products</td>
</tr>
<tr>
<td>Jubones River Basin Public Consortium</td>
<td>Water / Irrigation Boards</td>
</tr>
<tr>
<td>MAG</td>
<td>Community leaders / Beneficiaries</td>
</tr>
</tbody>
</table>

Review FORECCSA stakeholders and determine

- Ownership, resources, partnerships, and capacities to be sustained
- Capacity, commitment and structure of institutions assuming responsibility post project
- Change of internal conditions/inputs
- Involvement with the project sustainability (negative or positive sustainability prospect)
Mapping processes

(1) Stakeholder mapping: Samoa example

<table>
<thead>
<tr>
<th>Stakeholder Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governmental Institutions</td>
<td>Ministry of Natural Resources and Environment (MNRE), Ministry of Works, Transport and Infrastructure (MWTI), Samoa Water Authority (SWA), Ministry of Finance (MoF), Ministry of Health (MoH), Ministry of Women, Community and Social Development (MWCSD), Land Transport Authority (LTA), Electric Power Corporation (EPC), Ministry of Education, Sports and Culture (MESC)</td>
</tr>
<tr>
<td>Community</td>
<td>Community leaders</td>
</tr>
<tr>
<td>Public and private sector stakeholders</td>
<td>Public and private sector stakeholders</td>
</tr>
</tbody>
</table>

Review Samoan project’s stakeholders and determine

- Ownership, resources, partnerships, and capacities to be sustained
- Capacity, commitment and structure of institutions assuming responsibility post project
- Change of internal conditions/inputs
- Involvement with the project sustainability (negative or positive sustainability prospect)
Mapping project activities not only enables to select an outcome, but it also helps narrowing down the possibilities for site selection. Once this is done, the evaluator needs to see whether resilience is reflected in the potential site, in order to make a final choice for site and outcome selection.

(2) (3) Project activities mapping

- by concentration of activities
- by isolatability from other implementers by project sites

*according to terminal evaluation findings; and discussions with in-country counterparts
Mapping processes: project activities

Identify the concentration of activities.
The concentration shows where you should go.

Show the isolatability of AF project (with regards to other organizations implementing projects in the area).
Mapping processes: project activities

Map of Samoan activities

This map should be updated with:
- More details at local-level
- Concentration of activities
- Presence of other organizations in AF-supported regions
This map should be updated with:
- More details at local-level
- Concentration of activities
- Presence of other organizations in AF-supported regions
Adaptation and Resilience: consideration for site selection – FEEDBACK LOOPS

Does anything about the project site reflect resilience characteristics?

Example Questions

- E.g. What kinds of communication, and/or coordination has developed at this project site to sustain results?

- Does information get to whoever needs it to respond to climate impacts at this project site? Is it done in a new or different way because of the project?

Examples

- **Coordination mechanism:** Established and active cross-sector and representative national committee or group to facilitate long-term planning and short-term decision-making at the sector/sub-sector specific level

- **Open communication channels:** Regular (multi) village level representative meetings around addressing specific local climate risks and corresponding response measures
Adaptation and Resilience: consideration for site selection – FEEDBACK LOOPS

Does anything about the project site reflect resilience characteristics?

Example questions to consider

- How and in what ways were the final communication activities (that were sustained post-project) “innovative”?
- What decision-making was informed by information gathered and/or shared through these activities?
- What behavioral changes and resource allocation changes resulted from the communications?

EXAMPLE: Country/project

Samoa: “A large number of the most innovative communication activities started at the very end of the project, missing out opportunities to generate knowledge and lessons learned as well as to increase interest and CCA sensibility.” (FE)
Adaptation and Resilience: consideration for site selection - SCALE

Does anything about the project site reflect resilience characteristics?

Example Questions

- **Temporal scale:** e.g. Did sufficient time pass in order to see desired results (especially for natural systems)? In what way(s) did the outcome change the speed of responsiveness to climate disturbances at the project site?

- **Spatial scale:** e.g. Is there a cluster of sites that together comprise of a substantial benefit at a regional or national scale? Did the project results change the impact of the climate disturbance?

Examples

- Mangrove: Adequate time for restoration of a natural buffer to climate disturbances
- Early warning system: Increased speed of (human) responsiveness to climate risks...
- Afforestation: Area of restored natural resources is large enough to support ecosystem services
- Storm surge (sea) wall: Hard infrastructure provides a physical buffer from a targeted climate disturbance...

Remember to consider both time and space.
Mapping processes: project activities

Adaptation and Resilience: consideration for site selection - SCALE

Examples: Country/project

- **Belize:** “75% of coastal developments adhering to the development guidelines” (FE)

- **Argentina:** “Increased density of hydro-meteorological stations and rain meters.” (FE)

Example questions to consider

- Are the targeted coastal developments in critical locations?
- Is their combined size of the targeted areas enough to make an impact at a national level?
- Are the locations of the new met stations and rain meters in places most affected by drought/floods etc?
- Is there evidence that the speed of responsiveness to climate events has improved?
Adaptation and Resilience: consideration for site selection - DIVERSE

Does anything about the project site reflect resilience characteristics?

Example Questions

- **Human systems**: e.g. Does the project site show inclusion for women and girls, disabled, poor, and/or other marginalized groups? Does the site reflect diversity or diversification in other ways?

- **Natural systems**: e.g. Is ecological biodiversity a factor in sustaining results?

Examples

- Engagement of marginalized groups in decision-making: People who are historically left out of decision-making positions now actively participate.

- Gender equity in leadership: Women and girls, non-binary and/or trans people have leadership roles.

- Ecological diversity: A wide variety of species with different niches that have co-evolved together are not threatened or endangered.

Remember to consider both human diversity and biodiversity.
Adaptation and Resilience: consideration for site selection - DIVERSE

Example questions to consider

- Is there evidence that these coral varieties are climate resilient at this site?
- What critical (especially threatened, endangered) species' habitat is at these sites?
- How are cultural norms around recipes and cooking affected - and perpetuated - as a result of dietary changes?
- What is the impact of diet diversification on food security?

EXAMPLES: Country/project

Belize: “At least 3 restored coral sites, with resilient varieties grown in coral nurseries” (FE)

Ecuador: “Visible... diet diversification and the awareness about being able to feed better with their own production” (FE)

Remember to consider both human diversity and biodiversity
Adaptation and Resilience: consideration for site selection - DYNAMIC

Does anything about the project site reflect resilience characteristics?

Examples

- **Coordination**: Entities that are responsible for specific climate disturbance management are now sharing resources and information.
- **Partnership**: Active cooperation facilitating complex decision-making around common goals in relation to climate disturbances.

Example Questions

- e.g. What kinds of flexibility and adaptability are illustrated at this project site? How were these capacities demonstrated?
- E.g. If one path/strategy/approach did not work was another tried? Why, or what triggered the change? By whom?

Coral reefs are an example of a dynamic system.
Adaptation and Resilience: consideration for site selection - DYNAMIC

EXAMPLE: Country/project

Samoa: “25+ districts with **coastal infrastructure management (CIM)** Plans reviewed and updated with climate change risks fully integrated, through balanced involvement of men, women, and youth population.” (FE)

Example questions to consider

- How are decision-making processes or actions regularly better informed as a result of the CIMS? For whom?
- Are there new systems in place for reinforcing the gains in managing climate-integrated coastal infrastructure?
Adaptation and Resilience: consideration for site selection - REDUNDANT

Does anything about the project site reflect resilience characteristics?

Examples

- **Back-up systems:** Two evacuation routes through different terrain in case one is closed off or damaged
- **Parallel or duplication of effort:** An observer manually measures rainwater levels in addition to the hydro met station gauge

Example Questions

- e.g. Are there duplicate systems or back-up systems involved in responding to a specific climate disturbance at this project site?
- If one path, approach, or strategy fails, what are the other options available?
Adaptation and Resilience: consideration for site selection - REDUNDANT

Example questions to consider

What specific functions does each of the natural resource assets provide in the context of climate disturbances?

Do the functions overlap or repeat? To what extent?

What is the relationship between duplication of effort (e.g. multiple defenses in one place) and specific climate disturbances?

EXAMPLE: Country/project

Mauritania: “Natural resource assets created, maintained or improved to withstand conditions resulting from climate variability and change; e.g. Tree plantings, water and soil conservation, defenses, and village plantations.” (FE)
Adaptation and Resilience: other considerations for site selection

Does the project site reflect results important to local resilience?

- E.g. What is the local understanding of the project contributions to adaptation needs and/or resilience at this site, if any?
- What value is placed on these contributions, and by whom?
- Does this site reflect structures and functions that are critical to the targeted population or project objectives? How or in what ways?
- Are there any other considerations that weigh the relative importance of adaptation results and/or resilience at this project site?
(4) Mapping shocks to sustainability

Map local, regional, national, and international shocks that would affect sustainability (e.g. policy, economy, security) pre and post closure by site

- what external shocks linked to climate vulnerability and resilience affected the participants, partners, natural system, wider country?

- describe the viability of the local ecosystem and describe how it has changed since the project’s end. Why?

- What other external shocks affected the previously cited stakeholders?
Mapping processes

(4) Mapping climate stresses and shocks – example list

Climate change stresses
Gradual and/or cyclical changes in:
• Temperature
• Rainfall, rainfall patterns
• Sea level (rise)

Climate change shocks
Sudden ((un)expected) events:
• Hurricane or Typhoon
• Tornado
• Flood
• Storm Surge
• Seasonal Drought

EXAMPLE - Outcome: Improve food security for drought prone region

Related stresses: Temperature rise, decreased rainfall, shortened and delayed wet season
➢ Related effects: depleted soils, crop loss, shorter growing season, stunted crop growth, low yields

Related shocks: periodic drought, floods
➢ Related effects: topsoil loss, landslides, crop loss
Mapping processes

(4) Mapping climate stresses and shocks – example diagram
(4) Mapping other (non-climate) external stresses and shocks

Global Shocks
- Exchange rate
- Trade policies
- Price hike/drop of commodity
- ...

National Shocks
- Coup or political unrest
- Earthquake
- Inflation
- ...

Local Shocks
- Flood
- Landslide
- Violence/Gang Activity
- ...

Selected Asian Exchange Rates Against US$
June 1997 = 100

Source: Bloomberg, IMF

Asian Financial Crisis (1997)
Process for selection of outcomes to evaluate

- Revise Theory of Change into a Theory of Sustainability and pre-select outcomes linked to assets and capacities
- Refine outcome and site pre-selection through different types of mapping (stakeholders, project activities and areas, shocks and stresses)
- Review data of possible outcomes/outputs that could be evaluated ex-post
Stretch and drink break
B2 – Selecting measurable outcomes

Contents

• Outcome/outputs review for outcome selection
 Discuss quality of outcomes/outputs and ability to evaluate

• Tracing outcomes / outputs to sustainability and resilience
Review data of possible outcomes/outputs that could be evaluated ex-post

Discuss most traceable outputs/outcomes, select 1 outcome and add key questions to fieldwork

Refine outcome and site pre-selection through different types of mapping (stakeholders, project activities and areas, shocks and stresses)

Revise Theory of Change into a Theory of Sustainability and pre-select outcomes linked to assets and capacities

Process for selection of outcomes to evaluate
Selecting measurable outcomes

What does this step entail?

1. **Review outcomes to evaluate**
 - discuss quality of outcomes and ability to evaluate outcomes (which outcomes link to impact)?

2. **Check whether outcome(s) reflect sustainability and climate resilience**
 - explore ways in which the outcomes embody sustainability e.g. for infrastructure: Budgets for maintenance, operations, training, restoration, DRR
 - explore ways in which the outcomes exhibit resilience characteristics
Selecting measurable outcomes for evaluation

Outcome selection: Samoan example

Recap of Samoan outputs and outcomes:

<table>
<thead>
<tr>
<th>Intermediate states</th>
<th>COMPONENT 1</th>
<th>COMPONENT 2</th>
<th>COMPONENT 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS1: Awareness and ownership of coastal adaptation and climate risk reduction processes are strengthened at community and national levels and coastal communities involved perceive risk reduction to climate-induced hazard</td>
<td>IS2: Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks</td>
<td>IS3: Coordination for the implementation of CIM Plans increases and institutional capacity of government sectors to integrate climate risk into coastal management policies & processes is strengthened</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Outputs</th>
</tr>
</thead>
</table>
| • Review and update of CIM Plans with climate change risks fully integrated
 • Design of village hazard zone relocation plans
 • Training of community representatives on coastal risk assessment and adaptation | • Improvement of coastal roads and related infrastructure
 • Climate resilient shoreline and flood protection measures
 • Improvement of water sector services |
| ... | ... |
| • Revision of national organization and institutional structures to implement CIM Plans
 • Improvement of regulatory procedures for physical works implementation.
 • Training of policymakers and Technical officers on climate risk assessment | ... |
Selecting measurable outcomes for evaluation

Outcome review for outcome selection

Discuss quality of outcomes and ability to evaluate outcomes (which outcomes link to impact)?

The process to review outcomes/outputs allows to evaluate the most quantitatively traceable outcome indicators.

CONTEXT

- Collectively review ex-post/resilience aims
- Describe shocks since closeout (inc. climate shocks)
- Discuss site similarities/differences

OUTCOME REVIEW

- Review more measurable outputs/outcomes
- Review unmeasured outcomes
- Check ability to evaluate incomplete outcomes or what needs to be recreated
Selecting measurable outcomes for evaluation

Reviewing outcomes/outputs: example of Samoan project

There are different types of outcomes/outputs to consider for the review:

- Planned outcomes (targets)
 - Actual outcomes

- Strong outcomes (measurable outputs)
 - Weak outcomes (outputs not measured, missing data)

- Supportive outcomes (not standalone)

Measurable outputs/outputs:
- Coastal Roads;
- Seawalls/Rock walls;
- Replanting

Unmeasured outputs/outputs:
- Water Sector Services/IWS;
- Flood Protection;
- Training/Knowledge Change/CIM

Incomplete outputs/outputs:
- Regulatory procedures;
- CIM Plans at Village Level

Verify achievement, sustainability and risks
Give priority to measurable outcomes/outputs
Good candidates for contribution analysis
Selecting measurable outcomes for evaluation

Reviewing outcomes/outputs: summary

How do we review outcomes and outputs?

<table>
<thead>
<tr>
<th>Planned output</th>
<th>Actual outputs</th>
<th>Actual outcomes?</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>XX</td>
<td>XX</td>
<td></td>
</tr>
</tbody>
</table>

- **Check quality of outputs at final evaluation**
 (is it measurable? was it accomplished?)

- **Determine the actual outcomes and proof of outputs leading to outcomes from**:
 - the information provided in the results framework
 - the information provided in the final evaluation reports and other reports
 - the theory of sustainability previously developed (planned outcomes and IS)

- **Check sustainability at ex-post evaluation**
 (check risks to know whether the outcome was sustained)

- **Check the resilience of the sustained outcomes through shocks and disturbances**
 (can we find proof of the AF impact?)
Selecting measurable outcomes for evaluation

Reviewing outcomes/outputs

How do we review outcomes and outputs?

<table>
<thead>
<tr>
<th>Planned output (targets)</th>
<th>Actual outputs</th>
<th>Actual outcomes?</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>XX</td>
<td>XX</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS FRAMEWORK

FINAL EVALUATION

FINAL EVALUATION

EX-POST EVALUATION

Link with outcomes / IS from THEORY OF SUSTAINABILITY

RISKS TO SUSTAINABILITY

Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”

THEORY OF SUSTAINABILITY

RISKS TO SUSTAINABILITY
Selecting measurable outcomes for evaluation

Reviewing outcomes/outputs

How do we review outcomes and outputs?

<table>
<thead>
<tr>
<th>Planned output (targets)</th>
<th>Actual outputs</th>
<th>Actual outcomes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>XX</td>
<td>XX</td>
</tr>
</tbody>
</table>

- What is the quality of this output?
- Is this output measurable?
- How well was this output measured at final evaluation?
- What outputs are strong enough to be able to create a causal relationship to outcomes?
Selecting measurable outcomes for evaluation

Reviewing outcomes/ outputs

How do we review outcomes and outputs?

<table>
<thead>
<tr>
<th>Planned output</th>
<th>Actual outputs</th>
<th>Actual outcomes?</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>XX</td>
<td>XX</td>
<td></td>
</tr>
</tbody>
</table>

• What outcome can be found in relation to the actual outputs and to the intermediate states identified in the ToS developed earlier?

• If data supporting outcomes need to be revisited/ recreated at ex-post, will the link to the outcomes be strong?

Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”

Link with outcomes / IS from RISKS TO SUSTAINABILITY

FINAL EVALUATION

EX-POST EVALUATION

THEORY OF SUSTAINABILITY

RESULTS FRAMEWORK

FINAL EVALUATION
Example of Samoan project:

<table>
<thead>
<tr>
<th>Planned output (assets)</th>
<th>Expected outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement of coastal roads and related infrastructure</td>
<td>80 km of coastal roads and related infrastructure improved to withstand climate change and variability-induced stress</td>
</tr>
<tr>
<td>Climate resilient shoreline and flood protection measures</td>
<td>140 km coastline and riparian streams introduced with resilient shoreline and flood protection measures, including vegetation planting in at least 60 km coast and 50 km of riparian streams, and beach replenishment techniques applied in at least 2 sites and 10 Km coastline. Flood protection measures are implemented in at least 5 districts and 15 villages: The objective of integrated flood-risk management plans/measures implemented in at least 10 watersheds/ 80 Km of waterways, involving at least 15 of villages may have been too ambitious.</td>
</tr>
<tr>
<td>Improvement of water sector services</td>
<td>N. of population and communities accessing improved water sector services and infrastructure to manage impacts on water supply induced by climate change and variability</td>
</tr>
</tbody>
</table>
Outcome selection: Samoan example

Reviewing outcomes/outputs: measurable outputs in Samoa (assets)

<table>
<thead>
<tr>
<th>Planned output</th>
<th>Actual outputs</th>
<th>Actual outcomes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 km of coastal roads and related infrastructure improved to withstand climate change and variability-induced stress</td>
<td>4 access roads (total length of 12 km) completed in 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drainage maintenance works covers 16.9kms of flood-prone areas in the town area and was critical in alleviating flooding of main roads and properties during heavy rain.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Climate proofing measures implemented on coastal roads and related infrastructure in at least 10 districts and 40 villages</td>
<td></td>
</tr>
</tbody>
</table>

1. **Go back and check measurable outcomes/outputs**
2. **Check whether all planned outputs were completed inc. potential outputs**

 e.g. in 2018, 2 new access roads were due to be completed
Outcome selection: Samoan example

Reviewing outcomes/outputs: measurable outputs in Samoa (assets)

<table>
<thead>
<tr>
<th>Planned output</th>
<th>Actual outputs</th>
<th>Actual outcomes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 km of coastal roads and related infrastructure improved to withstand climate change and variability-induced stress</td>
<td>4 access roads (total length of 12 km) completed in 2016</td>
<td>Data linking to actual outcomes: the change from dirt pedestrian track to tarred road has facilitated mobility, especially for women and reduced risks in steep terrain for all people</td>
</tr>
<tr>
<td></td>
<td>Drainage maintenance works covers 16.9kms of flood-prone areas in the town area and was critical in alleviating flooding of main roads and properties during heavy rain.</td>
<td>Planned outcome TOS: Increased protection of the road from coastal erosion</td>
</tr>
<tr>
<td></td>
<td>Climate proofing measures implemented on coastal roads and related infrastructure in at least 10 districts and 40 villages</td>
<td>IS2: Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks</td>
</tr>
</tbody>
</table>

3. Identify examples in the final evaluation that help you make a link with the outcome and intermediate states from the ToS – *those examples tell a small part of planned outcomes*

4. Check actual outcomes of roads and related infrastructure improvement – *proof that the road is protected from erosion; proof that mobility was facilitated by tarred road*

5. Check data on risks in order to know if the outcome was sustained *e.g. was there annual maintenance budgets for roads?*
Selecting measurable outcomes for evaluation

Reviewing outcomes/outputs

<table>
<thead>
<tr>
<th>Planned output (assets)</th>
<th>Measurable outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Improvement of coastal roads and related infrastructure</td>
<td>80 km of coastal roads and related infrastructure improved to withstand climate change and variability-induced stress</td>
</tr>
<tr>
<td>• Climate resilient shoreline and flood protection measures</td>
<td>140 km coastline and riparian streams introduced with resilient shoreline and flood protection measures, including vegetation planting in at least 60 km coast and 50 km of riparian streams, and beach replenishment techniques applied in at least 2 sites and 10 Km coastline</td>
</tr>
<tr>
<td></td>
<td>Flood protection measures are implemented in at least 5 districts and 15 villages: The objective of integrated flood-risk management plans/measures implemented in at least 10 watersheds/80 Km of waterways, involving at least 15 of villages may have been too ambitious.</td>
</tr>
<tr>
<td>• Improvement of water sector services</td>
<td>N. of population and communities accessing improved water sector services and infrastructure to manage impacts on water supply induced by climate change and variability</td>
</tr>
</tbody>
</table>

Find data to link to outcomes
Outcome selection: Samoan example

Reviewing outcomes/outputs: measurable outputs in Samoan project

<table>
<thead>
<tr>
<th>Planned output</th>
<th>Actual output</th>
<th>Actual outcome?</th>
</tr>
</thead>
<tbody>
<tr>
<td>140km coastline and riparian streams introduced with resilient shoreline and flood protection measures, including vegetation planting in at least 60 km coast and 50 km of riparian streams, and beach replenishment techniques applied in at least 2 sites and 10 Km coastline</td>
<td>The Vaiala Seawall (0.66 km) and the Saleia Rock Wall (1 km) were both completed</td>
<td></td>
</tr>
<tr>
<td>Barely 3 km out of the planned 10 km of the new road for Salimu/Musumusu were constructed to protect critical sections of the access road prone to coastal erosion</td>
<td>Replanting coverage was equivalent to 18.9 hectares covering 14 sites</td>
<td></td>
</tr>
</tbody>
</table>

1. Go back and check measurable outcomes/outputs
2. Check the actual length of roads constructed in Salimu ‘barely’
Outcome selection: Samoan example

Reviewing outcomes/outputs: measurable outcomes in Samoa (assets)

<table>
<thead>
<tr>
<th>Planned output</th>
<th>Actual output</th>
<th>Actual outcome?</th>
</tr>
</thead>
<tbody>
<tr>
<td>140km coastline and riparian streams introduced with resilient shoreline and</td>
<td>The Vaiala Seawall (0.66 km) and the Saleia Rock Wall (1 km) were both completed</td>
<td>Data linking to actual outcomes: Seawall construction is having mixed results on tourism: it allows the protection of touristic infrastructures, but it also contributes to sandy beach destruction, reducing tourism</td>
</tr>
<tr>
<td>flood protection measures, including vegetation planting in at least 60 km</td>
<td>Barely 3 km out of the planned 10 km of the new road for Salimu/Musumusu were constructed to protect critical sections of the access road prone to coastal erosion</td>
<td>Planned outcome TOS: Increased protection of the road from coastal erosion</td>
</tr>
<tr>
<td>coast and 50 km of riparian streams, and beach replenishment techniques applied</td>
<td>Replanting coverage was equivalent to 18.9 hectares covering 14 sites</td>
<td></td>
</tr>
<tr>
<td>in at least 2 sites and 10 km coastline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RISKS: need to replenish/repair wave breakers after storm surges

RISKS: possible acceleration of sandy beach removal, contributing to ecosystem damage.

Data linking to actual outcomes:
- Replanting has a positive environmental impact with the limitation of erosion, flooding and preservation of biodiversity
- Planned outcome TOS: Alleviation of flooding of main roads and properties during heavy rain

3. Identify examples in the final evaluation that help you make a link with the outcome and intermediate states from the ToS

4. Check actual outcomes of seawall construction and replanting

5. Check data on risks in order to know if the outcome was sustained
 - *e.g. is there beach erosion, is the infrastructure weak?*

IS2: Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks
Selecting measurable outcomes for evaluation

Reviewing outcomes/outputs

Example of Samoan project:

<table>
<thead>
<tr>
<th>Planned output</th>
<th>80 km of coastal roads and related infrastructure improved to withstand climate change and variability-induced stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Improvement of coastal roads and related infrastructure</td>
<td>80 km of coastal roads and related infrastructure improved to withstand climate change and variability-induced stress</td>
</tr>
<tr>
<td>• Climate resilient shoreline and flood protection measures</td>
<td>140km coastline and riparian streams introduced with resilient shoreline and flood protection measures, including vegetation planting in at least 60 km of riparian streams, and beach replenishment techniques applied in at least 2 sites and 10 Km coastline</td>
</tr>
<tr>
<td></td>
<td>Flood protection measures are implemented in at least 5 districts and 15 villages: The objective of integrated flood-risk management plans/measures implemented in at least 10 watersheds/ 80 Km of waterways, involving at least 15 of villages may have been too ambitious.</td>
</tr>
<tr>
<td>• Improvement of water sector services</td>
<td>N. of population and communities accessing improved water sector services and infrastructure to manage impacts on water supply induced by climate change and variability</td>
</tr>
</tbody>
</table>

Find data to link to outcomes

Unmeasured outputs
Outcome selection: Samoan example

Reviewing outcomes/outputs: non-measured outcomes in Samoa (assets)

<table>
<thead>
<tr>
<th>Planned output/ outcome</th>
<th>What’s measured (actual output)</th>
<th>What’s not measured (actual outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. of population and communities accessing improved water sector services and infrastructure to manage impacts on water supply induced by climate change and variability</td>
<td>N. of population and communities accessing improved water sector services and infrastructure e.g. 544 ind. /3 villages</td>
<td>impacts on water supply induced by climate change and variability</td>
</tr>
</tbody>
</table>

1. Check actual outcomes of the project beyond the construction of infrastructures by looking for data that can show that the outcome actually materialized
 - *e.g. what does upgrading mean? (proof of increased supply)*
 - *e.g. data about the water tanks (how big, how much water provided, water quality, to how many people during what season?)*

Data linking to actual outcome: the upgrading of IWS/individual water tanks has resulted in more steady pressure/flow rates (increased water quantity for personal hygiene and better availability during the entire year) and lesser health risks (rapid sand filtration), pool rehabilitation under CSSP is improving water access.

Planned outcome TOS: Increased access to water and support during water shortage period

IS2: Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks
Outcome selection: Samoan example

Reviewing outcomes/outputs: non-measured outcomes in Samoa (assets)

<table>
<thead>
<tr>
<th>Planned output/ outcome</th>
<th>What’s measured (actual output)</th>
<th>What’s not measured (actual outcome)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. of population and communities accessing improved water sector services and infrastructure to manage impacts on water supply induced by climate change and variability</td>
<td>N. of population and communities accessing improved water sector services and infrastructure e.g. 544 ind. /3 villages</td>
<td>impacts on water supply induced by climate change and variability</td>
</tr>
</tbody>
</table>

RISKS: field visits showed some signs of poor-quality for IWS works but the main issue remains the lack of maintenance through regular community contribution

RISKS: poor governance resulting in uneven financial contributions to IWS's maintenance mechanisms

Planned outcome TOS: Increased access to water and support during water shortage period

IS2: Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks

2. Check data on risks in order to know if the outcome was sustained
Selecting measurable outcomes for evaluation

Reviewing outcomes/ outputs

Example of Samoan project:

<table>
<thead>
<tr>
<th>Planned output (assets)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Improvement of coastal roads and related infrastructure</td>
<td>80 km of coastal roads and related infrastructure improved to withstand climate change and variability-induced stress</td>
</tr>
<tr>
<td>• Climate resilient shoreline and flood protection measures</td>
<td>140km coastline and riparian streams introduced with resilient shoreline and flood protection measures, including vegetation planting in at least 60 km coast and 50 km of riparian streams, and beach replenishment techniques applied in at least 2 sites and 10 Km coastline. Flood protection measures are implemented in at least 5 districts and 15 villages: The objective of integrated flood-risk management plans/measures implemented in at least 10 watersheds/ 80 Km of waterways, involving at least 15 of villages may have been too ambitious.</td>
</tr>
<tr>
<td>• Improvement of water sector services</td>
<td>N. of population and communities accessing improved water sector services and infrastructure to manage impacts on water supply induced by climate change and variability</td>
</tr>
</tbody>
</table>

Find data to link to outcomes
Outcome selection: Samoan example

Reviewing outcomes/ outputs: supportive outcomes in Samoa (assets)

<table>
<thead>
<tr>
<th>Planned output</th>
<th>Actual output</th>
<th>Actual outcomes</th>
</tr>
</thead>
</table>
| Flood protection measures are implemented in at least 5 districts and 15 villages: The objective of integrated flood-risk management plans/measures implemented in at least 10 watersheds/ 80 Km of waterways, involving at least 15 of villages may have been too ambitious. | A flood protection measure for the Vaisigano Catchment in Apia has been completed through the LDCF and EWAC funding. The Vaisigano project is protecting 11 communities.
The ERCC project contributed with a flood study of the Vaisigano Catchment in Apia. Other flood protection measures were supported on Savaii Island (one site) or Saleia revetment wall in Savaii | Planned outcome TOS: Alleviation of flooding of main roads and properties during heavy rain
IS2: Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks |

1. Check for supportive outcomes (not standalone) that could support findings, and that could help rank the most effective outputs. These outcomes are good candidates for contribution analysis.

 e.g. there is no mention of the Vaisigano mileage covered by the ERCC project.

 e.g. supporting road and infrastructure maintenance, village-led CIM plans that support climate-resilience
Selecting measurable outcomes for evaluation

Reviewing outcomes/ outputs

Example of Samoan project:

<table>
<thead>
<tr>
<th>Planned output (capacities)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Improvement of regulatory procedures for physical works implementation.</td>
<td>Regulatory procedures for physical works implementation was to be revised with climate change and disaster risks integrated by Q2 of 2018. At final evaluation, it is still under discussion (not finalized)</td>
</tr>
<tr>
<td>• Design of village hazard zone relocation plans</td>
<td>Interviews of communities have shown a list of priorities that are still to be covered by government future investments; however, there is little appetite shown by the government to push for direct relocation of the population under direct CCA disaster threat</td>
</tr>
</tbody>
</table>

Missing data/ incomplete
Planned outputs

| Regulatory procedures for physical works implementation was to be revised with climate change and disaster risks integrated by Q2 of 2018. At final evaluation, it is still under discussion (not finalized) | ? |
| Interviews of communities have shown a list of priorities that are still to be covered by government future investments; however, there is little appetite shown by the government to push for direct relocation of the population under direct CCA disaster threat | ? |

Component 1: IS1: Awareness and ownership of coastal adaptation and climate risk reduction processes are strengthened at community and national levels and coastal communities involved perceive risk reduction to climate-induced hazard

Component 3: IS3: Coordination for the implementation of CIM Plans increases and institutional capacity of government sectors to integrate climate risk into coastal management policies & processes is strengthened

1. **Determine if data exists at final evaluation, or if we need retroactive ex-post recreation of outputs?**
2. **Check whether the outputs/ outcomes were finalized and what their sustainability is?**
 - If finalized, check whether the outputs have data to link to outcomes
 - If re-created at final, check retrospectively how good the outputs were?
Selecting measurable outcomes for evaluation

After outcomes/outputs review, tracing sustainability and resilience

What does a traceable outcome mean?

Output

Actual output*

Actual output*

Output

* This diagram is oversimplified because normally many outputs lead to an outcome and many outcomes (from various actors) lead to impact.
It is good practice to identify outcomes (and preceding outputs) linked to resilience and sustainability (outputs and outcomes that *may* be related to both resilience and sustainability noted in green).

Example (component 2):

- A substantial chunk of the budget was allocated to **road rehabilitation**
- However, due to a lack of national standards, there is no information as to whether these roads are **climate-proof**.
- There are uncertainties about the impact on forestry of upgrading inland roads without the **involvement of MAFF**.
- There are unexpected effects of coastal wave breakers on beach sand replenishment, which may also result in accelerated erosion on the outside of these infrastructures, contributing to **beach ecosystem damage**.
- All CIM Plans were officially endorsed by the communities, and they seem **committed to sustaining key infrastructure like roads** if hard machinery not needed.
Check whether there were any shocks since project close-out?
Check assumptions
Explore ways in which the outcomes reflect resilience characteristics
Consider the outcome(s) in the larger context of RRT (resistance – resilience – transformation)

IS1: Awareness and ownership of coastal adaptation and climate risk reduction processes are strengthened at community and national levels and coastal communities involved perceive risk reduction to climate-induced hazard
IS2: Infrastructure to manage impacts induced by climate change and variability on shoreline, water supply, and road access are strengthened and can endure climate shocks
IS3: Coordination for the implementation of CIM Plans increases and institutional capacity of government sectors to integrate climate risk into coastal management policies & processes is strengthened

Adaptation Fund’s desired impact to trace: “Adaptive capacity enhanced, resilience strengthened and the vulnerability of people, livelihoods and ecosystems to climate change reduced.”
Tracing outcomes / outputs to resilience

Reviewing sustainability: example of infrastructure assessment

Resilience Checklist

- **Disturbances** – What climate shocks and stressors (disturbances) does this infrastructure resist? How have the disturbances changed since project closing?

- **Systems** – In what systems does the infrastructure sit (human and natural)? What structures and functions does it fulfill in those systems?

- **Characteristics** - What resilience characteristics does the infrastructure exhibit in the face of climate disturbances (feedback loops, redundancy, diversity etc.)? Are the characteristics locally valued?

- **Means and Actions** – What activities and resources are being used to ensure the infrastructure continues to exhibit these resilience characteristics? In what ways and for how long?

Tracing outcomes / outputs to sustainability

Reviewing sustainability of outcomes

Sustainability & M&E conditions to trace outcomes/ outputs to sustainability

Consider the following questions to select and evaluate 1 outcome for ex-post fieldwork:

a. **What data is available and of greatest interest** to evaluate by stakeholders?

b. **Benchmarking** for ex-post sustainability and tracing participants and partners

c. **What would be necessary for results to be sustained**/ still functioning well?

d. **Was there any monitoring/ evaluation done since exit of outputs/ outcomes**? What can be traced?

e. **What array of stakeholders** will be involved in ex-post learning, stakeholder mapping, regional/ national debriefs (w/representatives from wider groups)?
Reviewing sustainability: example of infrastructure assessment

Sustained Impact Checklist

- **Resources** - How is infrastructure being maintained? Does it generate income or resources for anyone?
- **Partnerships and local ownership** - Who benefits from it being there? Who is using it/demanding it?
- **Capacity building** - What behavioral changes or policy changes have happened or are possible thanks to it? What priorities are changed? What new info or other benefits came out of it?
- **Emerging sustainability** - What modifications or changes are needed or were made locally to make it more useful or used?
- **Evaluation of risks** - What is the risk management plan? What other systems rely on this infrastructure? Are there liabilities?
- **Impacts** - Is the structure still standing (and expected to based on engineering inputs/expert analysis)?
Tracing outcomes / outputs to sustainability and resilience

Reviewing sustainability: example of infrastructure assessment

Do not forget to check unintended impacts

• Negative externalities e.g. *Displacement of people*

• Environmental impact of the use of infrastructure.
 e.g. Road and electricity grid extensions are closely related to deforestation. Opening a road will result in more charcoal production and supply to the towns it links to

• Although climate resilient, does the infrastructure generate shocks and stresses?
 e.g. a road leads to deforestation, deforestation leads to an increased risk of landslides.
 e.g. a sea wall might lead to water behind the sea wall not having tides anymore, impacting wildlife and thus livelihoods.
Process for selection of outcomes to evaluate

- ✔ Make final outcome / impact selection and site selection
- ✔ Discuss most traceable outputs/ outcomes, select 1 outcome and add key questions to fieldwork
- ✔ Refine outcome and site pre-selection through different types of mapping (stakeholders, project activities and areas, shocks and stresses)
- ✔ Revise Theory of Change into a Theory of Sustainability and pre-select outcomes linked to assets and capacities
- ✔ Review data of possible outcomes/ outputs that could be evaluated ex-post
You now have selected your sustained outcome(s), and you know where to go to evaluate it/ them!

It is now time to review methods...
What’s next?

• Part C - country-specific discussions
 More detailed discussions with the selected national evaluator(s) about ex-post methods based on outputs/ outcomes chosen.
 • Decisions on logistics and institutional buy-in
 • That would be a third training and discussion
See you tomorrow!

Questions? Comments?

to PART C....
Please take the following quick survey: [here](#)

What was most surprising?

What was unclear?

What else do we need to know?

If you wish, you can also verify your understanding of today’s session by taking this small quiz [Link to quiz B](#)